
Editoria
Community-owned Book

Publishing Platform

This book was written in
a Book Sprint supported
by the Shuttleworth
Foundation

Editoria

Community-owned Book Production Platform

5

�
8

10

13

15

23

��
26

28

30

32

35

39

41

��
46

47

49

Contents

About This Book

What Is Editoria?
The Skinny

Why Should I Care?

Where Did It All Begin?

Some Key Concepts

Quick Start Guide

Community is You, Us, We
We Are All In This Together

Editoria Is Yours Forever

How You Can Contribute

Where Is Everyone, Everything?

How to Make Feature Proposals

Developing a Feature by Yourself

Bug Squashing

Optimal Use Cases for Editoria
Supported Work�ows

Types of Content

Authors and Teams

��
52

57

59

65

69

75

80

83

85

��
88

90

95

104

���
108

112

115

Using Editoria
How It All Fits Together

The Mighty Dashboard

Building Your Book

Assigning the Book Team

Editing Content

Managing Work�ow

Exporting to Various Book Formats

Extra Admin Features

A Rapid Book Production Example

The Magical Paged.js
Automated Typesetting inside the Browser

Designing with Paged Media

Paged Media Support with Paged.js

Extending Paged.js

The Future
What's Next for the Technology?

Glossary

Colophon

About This Book

Across three sunny days in the San Francisco fall of 2018, this book was written
by fourteen friends, with supporting contributions made by several others
remotely. These contributors are each stakeholders within the Editoria
community, with their own a�liations to participating organizations. We
gathered and produced this book with the shared hope of welcoming,
supporting, and enabling other like-minded individuals and organizations
within the scholarly communications landscape who are weary of dated
proprietary publishing tools and hard-coded linear work�ows.

Our appreciation goes to the founders of Editoria—University of California
Press, the California Digital Library, and Coko. We recognize generous funding
from the Andrew W. Mellon Foundation. We also thank our friends at Book
Sprints for their expert guidance in making this book. Thanks also to the
Shuttleworth Foundation for funding this event. To all of these organizations
and teams and the individual contributors within them: our sincere gratitude!

We welcome new friends all the time to the Editoria community, including
Book Sprints as an early adopter, in addition to the American Theological
Library Association's ATLA Press, University of North Carolina Press and their
a�liate Longleaf Services, University of Michigan's Michigan Publishing and
their presentation and preservation platform Fulcrum, and University of
Technology Sydney's ePress—to name just a few. There are many others, and
there's plenty of room for more, still.

This book is aimed at a wide range of readers within the industry on the
publishing, content production, and technology sides; funders and strategic
stakeholders making technology or budgeting decisions; project managers,
designers, and so�ware engineers; and, really, any lifelong learner with a passion
for collaborative publishing technologies!

6 About This Book

Acknowledgments

This book was written at the Aspiration o�ces, the San Francisco Non Pro�t
Technology Center, from 15 to 17 October 2018. We thank Aspiration, Coko's
�scal sponsor, for generously sharing space for us to talk, whiteboard, eat, drink,
write, and edit. We also thank Book Sprints CEO Barbara Rühling, who
facilitated our process; this book would not have been possible without her.
Working remotely, Henrik, Agathe, Raewyn, and the rest of the Book Sprints
long-distance support team proved invaluable in keeping the e�ort on track and
moving forward while we slept overnight. Also, Juliana Froggatt copyedited
from France for UC Press. Thank you.

Participating in the Book Sprint were Yannis Barlas (Coko), Kate Warne (UC
Press), Justin Gonder (CDL), Christos Kokosias (Coko), Fred Chasen (Paged
Media), Alex Theg (Coko), Cindy Fulton (UC Press), Monica Westin (CDL), Adam
Hyde (Coko), Jessica Moll (UC Press), Julien Taquet (Coko), Julie Blanc (Paged
Media), and Alison McGonagle-O'Connell (Coko). Thanks to all of our
organizations for supporting our participation and our time away from the
o�ce.

Alex Theg deserves very special thanks here. As the only member of this
cohort based in San Francisco, he de�ly managed all logistical planning and
coordination. We were well fed, superca�einated, and generally well rested, as
we had beds to sleep in, all without much fuss, thanks to Alex. He even drove
some of us around the city.

This book was written about Editoria using Editoria! Here we are drinking
our own champagne: Editoria + Book Sprints = zero to book in three days!
Further, our plans are to print this book overnight for distribution to attendees
at the Editoria Community Meeting on October 18.

Last, we dedicate this book to Alexis, who writes Editoria code. Alexis
couldn't be here physically, but he supported us remotely around the clock. We
are so grateful.

What Is Editoria?

1

The Skinny

Editoria is a web-based publishing system designed for collaboration on and
production of book-length works. Built by publishers for publishers, the system
puts control over work�ow into your hands and, importantly, takes it out of the
hands of third-party vendors.

Leading-edge technology

To return control over work�ow to publishers, Editoria enables authoring,
collaboration, editing, styling, formatting, review and commentary, automated
typesetting, and ultimately multi-format export (including for downstream uses
outside the system) all within a web browser. To achieve this functionality,
Editoria incorporates "best of breed" technology, being built atop PubSweet,
and is an assembly of JavaScript-based modules.

By publishers for publishers

Editoria is open: open source, open community, and an open proposition. This
means that the development roadmap is open for your ideas and contributions,
as is a vibrant community of forward thinkers from across the scholarly
publishing landscape. Participation in the community is critical. The
community developed the platform as it exists today, and members are all
responsible for architecting and iterating toward the future .

Editoria 9

Editoria community members collaborating

Where you belong

As you hold this book, reading these words, you are already part of the
community. Welcome! This is exactly where you belong, and we are delighted
you are joining us.

2

Why Should I Care?

As we know, a lack of funds for scholarly communication has meant a curtailing
of many forms of publishing. Editoria is here to help by o�ering a new way to
publish niche scholarship e�ciently and inexpensively.

Editoria is a browser-based system that facilitates collaboration among
editors, authors, and in-house sta� in making books. Editoria's in-browser, real-
time collaboration has particular advantages over legacy systems, replacing the
need to use Track Changes in multiple Word �les and keep track of changing
versions, and the need to share those �les as email attachments or via FTP with
potential delays or confusion among users. With Editoria, publishing sta� and
authors can view, edit, export (as EPUB or PDF), or print a paginated version of
a book at any point.

Pushing the button

Editoria 11

Consequently, Editoria o�ers independence from expensive, upgrade-driven
systems. You can, for example, do away with Microso� Word's costly licenses
and the need to update macro suites to keep pace with the latest releases of the
so�ware or of constantly evolving operating systems. Editoria also frees you
from reliance on vendors to produce HTML and other formats from .docx, a
process that is costly, time-consuming, and deliberately opaque.

Editoria helps you create and customize professional production work�ows
that can be scaled to publish many books in ways that suit your needs instead of
the needs of the so�ware vendors. For instance, batch copyediting is easier to
manage; the Bookbuilder allows all team members to see at a glance who is
working on which document and what parts of the book are available for them
to work on. And designers can create and deploy CSS style sheets that support
particular visual designs and serve speci�c reader needs. Automated paging
from within the system means the ability to avoid the considerable costs of
professional typesetting services, including time spent tra�cking �les and
communicating with vendors.

Adopting Editoria gives your team the chance to innovate, to move beyond
traditional bookmaking while maintaining professional standards and best
practices for editing and typesetting.

But Editoria is not just so�ware—it is a community, and the community
drives the evolution of the system as cocreators of its tools. This kind of
participation not only gives you the power to improve the product but also
means you own your own tools, and you gain the bene�t of belonging to a
broader knowledge-sharing collective .

12 Why Should I Care?

Reclaiming the publishing infrastructure

3

Where Did It All Begin?

First and foremost, Editoria is a community. We believe that making good
so�ware is a conversation, and we also believe that people making books
shouldn't work alone. The Editoria community consists of (but is not limited to)
university presses, library publishers, and other folks working in scholarly
communication who share a common interest in modernizing book production
work�ows. We are o�en motivated, at least in part, by a shared interest in taking
back the control of academic production from corporate interests.

Editoria began as a grant proposal jointly submitted by University of
California Press (UC Press) and the California Digital Library (CDL), which
recognized their shared challenges in supporting scholarly monograph
production. University presses in particular struggle to support these valuable
and necessary publications—particularly in the humanities and social sciences—
because each costs between US$15,000 and US$40,000 to publish and the titles
rarely sell enough copies to cover that amount (see "The Costs of Publishing
Monographs: Toward a Transparent Methodology," by Nancy L. Maron,
Christine Mulhern, Daniel Rossman, and Kimberly Schmelzinger [http://sr.ithak
a.org/?p=276785]).

Two areas where costs can be reduced are infrastructure and work�ow.
University presses are o�en limited by expensive, outdated infrastructure that
does not facilitate collaboration and does not natively support the simultaneous
creation of print and digital formats. Library publishers o�en lack any
production infrastructure at all and can't provide the tools needed by campus-
based book publishing e�orts.

Time and resource expenditures can be reduced if editors are able to move
away from exchanging and tra�cking �les and toward working in a shared,
web-based collaborative platform. Finally, copyediting, layout, and proofreading

http://sr.ithaka.org/?p=276785

14 Where Did It All Begin?

costs can be substantially reduced by relying on a templated system that
collapses the copyediting and proofreading stages and automates page layout.

With generous funding from the Andrew W. Mellon Foundation, UC Press
and CDL chose the Collaborative Knowledge Foundation (Coko) as a technology
partner to help build both the Editoria platform and its community. Along the
way, additional funders and organizations have helped shape the project. For
example, the Shuttleworth Foundation funded the development of Paged.js, an
export component used by Editoria.

The �rst release of Editoria was designed to meet the speci�c needs of UC
Press editors. CDL is now working on a �avor of Editoria to suit the speci�c
needs of the library publishing community. Book Sprints also has its own
radically fast work�ow built on top of Editoria. You can adopt and use any of
these con�gurations "out of the box" or leverage Editoria's modular nature to
construct your own ideal publishing platform.

As of press time, we are about to convene the �rst ever Editoria Community
Meeting in San Francisco. Dozens of people from across library publishing,
university presses, and scholarly communications will discuss work�ow, attend
demonstrations of the latest version of Editoria, and ultimately determine the
future of book production work�ow.

4

Some Key Concepts

Before we go on, there are a few terms we need to de�ne. The following are key
concepts for Editoria that will be referred to throughout this book. We have
added Editoria-speci�c detail when appropriate.

Open source

Open source is a type of license that grants liberal rights to anyone to use,
modify, and redistribute a piece of so�ware's source code. Editoria uses the MIT
license [https://gitlab.coko.foundation/editoria/editoria/blob/master/LICENSE.m
d] . In e�ect, this means that anyone can access Editoria's source code for free
and change it as they like.

Typically, open source projects also have a style of operating that privileges
the contributions of developers over those of other participants. However,
Editoria's community is deliberately designed not to function like this. We
welcome participants of all skill types and prefer input from use-case specialists
(sometimes referred to as end users). This means we welcome participation from
you!

Community

The term community gets used a lot in this book! The people who use and
contribute to the improvement of Editoria make up our community. We

https://gitlab.coko.foundation/editoria/editoria/blob/master/LICENSE.md

16 Some Key Concepts

welcome your participation—again, you do not need to be a developer to
participate. We welcome use-case specialists who are enthusiastic and want to
use their experience with Editoria to improve it.

Single source

Confusingly, "single source" has nothing to do with source code. Instead, it is
the idea that the content of a chapter or other part of a book will look the same
to everyone at any give time, no matter which user is altering it. There is only
one, canonical, version of the chapter or book, which is shared online with all
users who have access to it, and any changes made change that version.

For example, if I open a chapter in Editoria, edit it, and then close it, I have
changed the same text that everyone else who comes a�er me will edit. This is
not true of a work�ow in which one person changes a Microso� Word �le (for
example) and then saves it with a di�erent name and sends that version to the
next person to work on. In that case, if the �rst person edits the original �le
again, the second person will not have access to those changes.

Editoria 17

Single source, multiple output

Linked to single source are advantages to storing your content in HTML.
Because Editoria uses one canonical version of the content, and that content's
format is HTML, it is possible to export to many, many other formats at the push
of a button. HTML, being the most common content format in the world, has
the advantage of very many conversion tools built to convert it to other formats.
Editoria leverages this so that you can easily export to many formats quickly and
cheaply.

Chief among these content conversions in the world of books is output to
ePub (which itself uses HTML as an internal format) and to PDF. PDF output in
Editoria has been tackled by a special type of magic called Paged.js. This
JavaScript library can convert the Editoria HTML content into beautiful, print-
ready, book-formatted PDF. It is very magical, and we have documented this
conversion extensively in this book.

Automated typesetting

Also known as automatic typesetting. There is no such thing as true automated or
automatic typesetting in the sense that a design can be applied and every single
book will be rendered perfectly without human intervention. However, this term
is still useful and describes a process in which books are exported using a
standard design template and come out almost perfect, with minimal alterations
required. Such is the case with Editoria.

Editoria uses Paged.js, an automatic typesetting tool developed by the clever
people of the Paged Media Initiative [https://pagedmedia.org/] . Paged.js, at the
push of a button, will take a book from Editoria and render a preview in the
browser by paging the content using CSS style. Then the browser print dialog
can produce a book-formatted PDF. The results will look very good but will
probably require small adjustments. This process is covered later in this book.

https://pagedmedia.org/

18 Some Key Concepts

Semantic markup

Semantic markup means applying the correct named styles (e.g., Heading 1 or
Subtitle) to parts of a text rather than adding arbitrary font sizes and weights to
achieve a similar appearance.

You will have used systems that support semantic markup and non-semantic
markup. Microso� Word, for example, uses both. In mixed systems, something
that looks like a heading may be either marked up correctly, for example as an
H1 (Heading 1), or given arbitrary characteristics, such as 24-point font size and
bold weight. The di�erence is enormous. If the heading is created with a
speci�c named style, that helps with many things, including the targeting of
design speci�cations (specs) to the element. However, if the heading is created
with arbitrary characteristics, it is very di�cult to automatically apply specs to
it (speci�c font size and weight, for example) when exporting to PDF, etc.
Editoria is not a mixed system; it allows only the application of speci�c named
styles. This prevents users from applying arbitrary characteristics and protects
the use of the same styles uniformly across the entire book. As an added bonus,
uniform application of styling makes books produced with Editoria more
accessible!

Note: Sometimes in this book we use the term semantic HTML. This means
the same as semantic markup when referring to a HTML �le that has been
marked up correctly (semantically).

Workflow

Work�ow refers to the passage of a text through various processes from creation
to completion. Throughout these processes, various people with speci�c roles
(e.g., author, production editor, copy editor) perform tasks at speci�c moments.
Some work�ows are more linear and prescriptive than others. A university press,
for example, typically has a strongly linear work�ow, whereas a Book Sprint or
an author working alone has a very �exible work�ow.

Editoria 19

In general, publishers have historically had very few options when designing
work�ow. Editoria o�ers many new opportunities for �exible, intentional
design.

PubSweet

PubSweet is the back end upon which Editoria is built. For more information
about PubSweet and the suite of products that use it, see Technology > Product
Suite [https://coko.foundation/product-suite/] on the Coko website.

Track changes

Track changes here refers to a text-editing tool similar to those found in other
word processors, such as Microso� Word. This tool marks deleted or added text
with underlining and di�erent colors so that users can easily see it. Depending
on their assigned roles within the book team, users can accept or reject these
edits and make new, tracked revisions to the text.

https://coko.foundation/product-suite/

20 Some Key Concepts

Modular

Editoria is not a single, monolithic system. Its �le-ingestion, editing, and export
components are individual, modular elements within a suite of products that
publishers can select à la carte to use or not. This also means that each
individual element can be customized or replaced to meet each publisher's needs
without compromising the rest of the system, and the community can share and
collaborate on these component versions.

WYSIWYG

WYSIWYG, the acronym of “what you see is what you get”, is frequently used to
describe text-editing interfaces. In Editoria, the editor component (called Wax)
represents the semantic structure of the document being edited (showing, for
example, which text is a heading and which is a block quote). While Wax does
not show the design—the �nal look of the text as it will appear in the printed

Editoria 21

book—it does strike a careful balance between visually representing styles and
providing enough space for Editoria's powerful collaboration features.

Installation options

Local install

As Editoria code is freely available from GitLab [https://gitlab.coko.foundation/e
ditoria/editoria] , anyone with some tech skills anywhere can install and host it
locally on their own computer. In this scenario, the code lives in the local
machine, which is generally the only place where this running instance of
Editoria can be accessed. The user is responsible for maintenance, security, and
updates.

DIY

An organization that has tech resources and has installed Editoria on its own
server has performed a DIY installation. The server may be hosted on the
organization's premises or remotely. In this case, Editoria can be accessed from
anywhere on the internet (unless it is blocked by �rewalls). The organization's IT
department is responsible for maintenance, security, and updates.

Third Party

Organizations can also decide to delegate full responsibility for hosting and
maintaining an instance of Editoria to an outside group. This can include
managing maintenance and updates. There are any number of groups that could
be an appropriate choice for providing hosted deployment services.

https://gitlab.coko.foundation/editoria/editoria

22 Some Key Concepts

Three types of hosting

5

Quick Start Guide

We know some of you want to get started right away before reading all the
documentation. This quick start guide is for you!

Once you sign in, you arrive at the book Dashboard, where you see all the
books on which you are working. Here you can

create a book

delete a book

rename a book

open a book to begin working on it, taking you to the Bookbuilder

Within the Bookbuilder, you can

specify team members and assign them roles (project editor, copy editor,
author) for this speci�c book

upload �les, by batch or individually

set page-break designations

reorder chapters and parts of the book using drag and drop

use the status bar to track status and to pass a component from one user
to another

open a part of the book for editing in the Wax editor

export to a varity of output options

24 Quick Start Guide

Within the Wax editor, you can

write content

add styling and formatting

leverage word processing tools to edit text and review changes

Tip: When the �rst line of text in a chapter is styled as a title in the Wax
editor, it then appears as that chapter's title in the Bookbuilder—check it out!

Good luck! If you get stuck, read the rest of the book or reach out to the
community for help.

Community is You,
Us, We

6

We Are All In This Together

A philosophy of contribution underlies Editoria's community governance and
informs the meaning of open source for this shared, distributed project. There are
consequently a number of ways you can participate in the Editoria community,
described in more detail later in this book.

The open source ethos of Editoria extends beyond the codebase to all those
who work with the so�ware to produce and publish books. This can mean
sharing code openly for reuse, but it can also mean sharing experiences,
expertise, new work�ows, working methodologies, and feature proposals.

In a very real sense you're not getting the platform for free—rather, you are
also expected to contribute your experience and expertise back to the
community. That is, in e�ect, the cost of being involved with Editoria. You
bene�t from it, but you also pay into it with your involvement.

As an example, one of the ways that you can participate in the Editoria
community as a use-case specialist is to propose a new feature. This process is
open to anyone. The community will comment on the ideas you propose, to help
improve them. If you have an idea for how Editoria could work better, sharing
these ideas, creating feature proposals, and listening to the feedback will not
only help you but help others using the platform in the future.

The Editoria team is here to help

There are actually people employed to work on Editoria. The team includes
facilitators, community managers, developers, and CSS specialists. These folks

Editoria 27

are part of the community and are also there to support it. The Editoria team is
happy to help you with everything from demos to introductions, from
understanding the code to optimizing work�ows—whatever you need. Don't be
shy! There is information later in this book about how you can reach out to the
team; a good place to start is with the Editoria Community Manager
(alison@coko.foundation).

A word on users

In the so�ware world, there is a legacy polarization of those who make the
so�ware and those who use the so�ware. This is especially prevalent in the open
source community, where developers are the primary—sometimes the only—
solution providers, and users are those who consume developers' work. The
culture and language of open source have largely led to the exclusion of users
from the design and production of the tools they need, and consequently they
are sometimes seen as parasites on developers' work. This paradigm is not true
for the Editoria community. Here the user is, by design, as important as
everyone else, perhaps even more important. Users are the people who know
best what changes can improve Editoria.

We would like to dispense with the holdover language that devalues the input
of the people using the so�ware, but changing language is a di�cult task. So we
are consciously using the term user for someone who is a valued use-case
specialist. And by use-case specialist, we mean you!

7

Editoria Is Yours Forever

Editoria's code is open source and currently held by two trusted organizations:
University of California Press and Coko. Neither of these has a wish to be
acquired or to sell Editoria. That's all we need to say about that.

If you wish for more assurance, it is good to know that the open source
license cannot be retrospectively revoked. So what you have now, you will always
have. At the time of writing, Coko is working toward a further layer of security
by locking the requirement for the source code to be open into a new
organizational constitution: if the articles of constitution require the code to
remain open, then it will be extremely di�cult to change the license even if the
organization is acquired.

But again, Editoria will be open forever. Some of us have literally slept on
couches to get us here; we aren't about to sell out now.

Coko is also currently developing membership models to aid Editoria's long-
term sustainability and is conducting an ongoing search for funding. Please
consider becoming part of these e�orts! A good starting point is to contact the
Editoria community manager.

Further, Coko, as the primary steward of Editoria, does not intend to compete
with any service provider in its communities, whether the book or the journals
community. We want to seed commercial services in the Coko community, not
compete with them. We want to help you succeed! So should you wish to start
o�ering Editoria services of any kind, come talk to the Coko folks.

Coko is also invested in growing and strengthening the community by
facilitating regular events that bring people together to determine Editoria's
future, leaving the processes for development entirely open. Anyone can

Editoria 29

participate by adding their own vision—even if you lack development resources.
We have designed a f eature proposal process (documented later in the book)
that enables people without development resources to get features they want
built. This process is designed to be inclusive and transparent.

Editoria and Coko are not storing any personal data, because neither is a
provider of services that require personal data. Whoever is responsible for
installing Editoria is responsible for storing information and making decisions
about data ownership and access. Coko will endorse and work directly with only
those services that respect data privacy requirements.

8

How You Can Contribute

The Editoria community is an active arena, and you are encouraged to jump in!
Some ways to get involved are listed below. There are sure to be many additional
ways to contribute that we haven't even thought of yet. We all help each other
out, because when one of us moves forward, we all do—this is the spirit of our
community.

You can contribute to the community by

attending Editoria events

hosting an event, including webinars

sharing meeting space with the community

blogging about Editoria

sharing thoughts about Editoria in social channels

demonstrating Editoria to friends and colleagues

presenting about Editoria at conferences

commenting on Editoria issues in GitLab

proposing features in GitLab

creating and sharing documentation

obtaining and sharing funding for continuing development

helping others on Mattermost [https://mattermost.coko.foundation/]

contributing code

contributing CSS templates

https://mattermost.coko.foundation/

Editoria 31

Technology-provider organizations can

build modularly to support integration-use cases

spread the word broadly within the tech community

The Editoria community manager (alison@coko.foundation) is here to help you
in any way possible!

9

Where Is Everyone,
Everything?

When you join the community, naturally you'll want to know what support is
available as you work in Editoria. Where can you turn for help? What are the
available resources for troubleshooting?

Don't worry—we've got you covered.

First, if you are new to the Editoria community, one of the best people to
reach out to is the Editoria Community Manager, Alison
(alison@coko.foundation). You can also engage via the channels listed below:

Editoria email list

The Editoria email list is useful for sharing info about events we are all at or for
quickly calling for broad opinions or help. It can also be used to share other
information, ideas, etc., in a way that's more personalized than other channels
that are totally public to the web. You can �nd and subscribe to the email list
here [http://lists.coko.foundation/listinfo.cgi/editoria-coko.foundation] .

http://lists.coko.foundation/listinfo.cgi/editoria-coko.foundation

Editoria 33

Mattermost

Mattermost is a online chat platform similar to Slack (if you know it). This is
where you can �nd everyone. The community hangs out here and chats about
everything and nothing. Whether we’re making small talk or solving problems
collaboratively, Coko’s Mattermost [https://mattermost.coko.foundation/login] is
a window onto the wider community supporting Editoria. Join to see for
yourself!

Should you run into trouble, or if you simply have a bug to report or need help
setting up the application, this is the place to go. Sign up for the service (which
is, of course, free) to participate in the chat. There is a dedicated Editoria
channel that anyone can join. Simply shout when you join, and your new
community will be happy to help you out!

Readme

Instructions on how to get the code and run Editoria can be found in the
repository's readme �le [https://gitlab.coko.foundation/editoria/editoria/blob/mas
ter/README.md] . You can run the application either on a server or locally on
your computer (the latter is usually more useful for developers).

The recommended operating systems for running Editoria are Linux for
server deployments and either Linux or Mac OS X for local hosting. Editoria
comes with Docker containers to make deployments easier. These are optional,
but should you choose to use them, make sure Docker is set up on your server.
Refer to the readme. Coko can also quickly set up demo deployments for
organizations to try out Editoria before making the decision to jump in.

https://mattermost.coko.foundation/login
https://gitlab.coko.foundation/editoria/editoria/blob/master/README.md

34 Where Is Everyone, Everything?

GitLab

GitLab [https://gitlab.coko.foundation/editoria/editoria] is where developers can
�nd all the code for the di�erent parts of the application. A project’s code
repository is a great place to assess the health of an open source initiative. Visit
ours and review commits, issues, and other key elements of the vibrant
community that supports Editoria and other Coko tools.

Also, Editoria has bugs! Gasp! But it's okay—so does every so�ware! If you
have a bug that you want to submit, simply open an issue on Editoria's GitLab
repository. The developers can then pick that up and work on it. Generally, bugs
get higher priority than feature proposals.

https://gitlab.coko.foundation/editoria/editoria

10

How to Make Feature
Proposals

You can propose new features for Editoria. This process is open to everyone,
especially to those organizations or individuals without development resources.
The Editoria team has speci�cally designed the feature proposal process to be
nontechnical. It is intended primarily for people who use Editoria and want to
see it improved to better meet their needs and the needs of others.

Organizations or individuals with development resources that intend to build
something should not follow this process but instead open a request for
comment (RFC) if the code they want to develop is intended for inclusion in the
Editoria core (see the next chapter).

Bug reports are separate from feature proposals and should be logged as such.

To comment on anything below or to put in a request, please visit GitLab [htt
ps://gitlab.coko.foundation/editoria/editoria] .

Who can create a feature proposal?

Anyone can propose a new feature: individual or organization, commercial or
noncommercial, with closed or open content, libraries, publishers, publishing
sta�, authors, reviewers . . . Anyone and everyone!

https://gitlab.coko.foundation/editoria/editoria

36 How to Make Feature Proposals

The scope of proposals

There are no hard rules for the scope of a proposal, beyond a best e�ort to make
it easy to understand.

In general, a proposal can be as large or small as you feel it needs to be. If
there are numerous distinct features, then these should all be separate
proposals. If there is a large development that requires lots of changes to realize,
then it is preferable that this be a single feature proposal. For example,
numerous small changes to the Bookbuilder should have one feature proposal
per item. However, if the proposal is to create an entirely new Bookbuilder
interface or a complex new feature with many facets to extend the book export
work�ow, then these larger developments should, at �rst, each be written up as
a single feature proposal.

Proposals that will a�ect any part of the Editoria work�ow should be made as
feature proposals.

Proposal process

Before you can lodge a feature proposal, you must �rst create an account in the
Gitlab repository [https://gitlab.coko.foundation/] .

Then create a new issue here [https://gitlab.coko.foundation/editoria/editoria/i
ssues] .

The proposal title must be created with the pre�x “Feature Proposal:”
followed by a short title, e.g., Feature Proposal: Add logout button to Bookbuilder.

In the description the proposal must state the organization or individual
making it. This is to help the Editoria core team keep a fair distribution of
attention among participating organizations.

The proposal should then include a short summary that indicates the goal of
the feature and the roles a�ected. These statements provide a sense of who the
feature's primary user is and what they are trying to achieve.

https://gitlab.coko.foundation/
https://gitlab.coko.foundation/editoria/editoria/issues

Editoria 37

The main body of the proposal must describe the feature, preferably from the
user's viewpoint. No technical details need be included unless it is a technical
proposal (for example, recommended standards for EPUB accessibility should
contain the relevant technical details). The aim of this section is to spell out the
proposal as clearly as possible, in a very readable format, from a user's
perspective. Screenshots or quick sketches of what the feature's user interface
will look like (in rough form—a photo of a hand-drawn sketch is completely
acceptable, for example) are very much advised if appropriate.

The community manager (Alison) is available to help community members
write and submit proposals.

Discussion and voting

The Editoria team encourages the community to comment on proposals (in
GitLab, using the comment feature within each proposal). These comments help
to improve what is proposed. Subsequently, the community votes on the
proposed developments via the up and down votes in GitLab.

Review process

Every three months the Editoria Core team will

1. review the proposals

2. ask for more details where necessary

3. make an initial triage (Adam and Alison)

4. decide what will be included in the next quarter's roadmap (Adam and Alexis)

5. create a table in the Editoria readme documenting the roadmap

6. announce the roadmap on the Editoria.pub site

7. close any feature proposals that did not make the cut for that quarter's
roadmap (these may, however, be reopened and resubmitted at a later date)

38 How to Make Feature Proposals

How decisions will be made

The Editoria core team will consider each proposal on its own merits. There will
not be a formal metric system (having the highest number of GitLab yes votes
will not automatically guarantee the acceptance of a feature proposal, for
instance, although this will have a positive in�uence). However, the team will
look at forming a coherent roadmap, choosing items in a consensus-based
discussion with the following factors in mind:

1. Proposals made by organizations or individuals that use Editoria in
production and are active in the community will get the highest attention.

2. Proposals made by two or more collaborating organizations or individuals
will get more attention that those made by one organization or individual.

3. Proposals that get more community discussion and review (up votes
included) and respond to community input will get more attention than those
that do not.

4. Clear proposals will be preferred over less clear proposals.

5. The Editoria core team will endeavor to choose proposals for the quarterly
roadmap that represent a broad spectrum of the community.

Who makes the decision?

In reviewing and selecting feature proposals, the Editoria core team will be
facilitated by Adam Hyde and will include the Editoria community manager
(Alison) and the Editoria lead developer (Alexis). The group will also include
others as needed (e.g., Christos for decisions involving Wax).

11

Developing a Feature by
Yourself

If you are a developer or part of an organization with developers on sta�, and
you wish to extend or otherwise change Editoria, then you are very welcome to
do so. There are several options. One, available to anyone, is to fork the code and
create your own ideal version. Another, more community-minded path, is to
contribute to the Editoria core code. We believe that most development will
occur with the latter intention, so we want to help ensure that your code lands
well and is merged quickly into the main repository. There is a simple process
that we hope you will follow:

1. Before you start writing any code, create a new issue in the Editoria main
repository [https://gitlab.coko.foundation/editoria/editoria/issues] . This must
have the pre�x "RFC:" (request for comment) and be followed by a short title,
e.g., RFC: New Bookbuilder component.

2. Describe in as much detail as possible the proposed feature, including
wireframes and technical implementation details. This should be written so
that the Editoria core team and greater community can quickly evaluate the
proposal.

A�er submitting your RFC, you can expect quick feedback from the Editoria
core team. The community at large is also encouraged to comment on the
proposal. The idea is to get as much feedback as possible to help you improve
your approach before development begins.

This process is designed to assist you in developing features that will match
the Editoria approach well, and prevent possible duplication of e�ort, such as by
pairing you with others to lessen your development burden if possible.

https://gitlab.coko.foundation/editoria/editoria/issues

40 Developing a Feature by Yourself

We intend this process to be quick and responsive. If you are not getting the
feedback you need within the time you allot, then reach out to the Editoria core
team directly through the issue in the repository or through the Mattermost chat
[https://mattermost.coko.foundation/] . Thanks for considering this option!

https://mattermost.coko.foundation/

12

Bug Squashing

A so�ware bug is an error, �aw, failure or fault in a computer program or system
that causes it to produce an incorrect or unexpected result, or to behave in
unintended ways. One of the skills that it's very good to learn is how not to be
frightened of bugs! Bugs are a normal part of so�ware; all so�ware has them.

As a member of the Editoria community, there are two things that you need
to learn about dealing with bugs. The �rst is how to make good bug reports. The
second is how to �nd workarounds so that you can continue working while the
bug gets �xed. Of course, if you happen to be a developer, you can also help �x
the bug!

Learning how to make an e�ective bug report

To make a good bug report, you must become a little familiar with GitLab,
where all Editoria bugs are recorded. GitLab is a code repository designed for
developers, but making bug reports in GitLab is very simple for everyone. First,
visit Coko GitLab [https://gitlab.coko.foundation/] and create a new account.
Next, go to the Editoria "main repository [https://gitlab.coko.foundation/editoria/
editoria/] ." Access issues by clicking the issues link on the le� side of the
screen, or you can go there directly [https://gitlab.coko.foundation/editoria/editor
ia/issues] .

https://gitlab.coko.foundation/
https://gitlab.coko.foundation/editoria/editoria/
https://gitlab.coko.foundation/editoria/editoria/issues

42 Bug Squashing

Locating the bug reporting screen

Anybody is welcome to create a bug report here. Don't worry about making
mistakes (we believe there is no such thing). The community will help you
improve how you use these tools as we go.

To initiate a bug report, select the green "New issue" button at the top of the
page. Enter a title in the title �eld and a description in the description box. To
report a bug, you will use the title naming convention: "Bug:" followed by a
short, snappy title describing the bug. For example: "Bug: The entire
Bookbuilder page is pink." The title shouldn't be an essay, and should be kept
short and snappy. Eight to ten words is best. If you go above or below that, once
again, no worries - just report the bug and we'll work it all out.

A�er you've created a title, you will enter the description of the bug. You
don't need to provide any technical detail, unless you know it. You do have to
describe what you experience in terms of what you are trying to achieve, what
you expected to happen, and what actually happened. A common format that is
very useful is as follows:

Editoria 43

"As an Author I want to use Bookbuilder to organize my book chapters.

Expected behavior: I click on link to Bookbuilder and I can access the
Bookbuilder.

Actual behavior: I click on the link to the Bookbuilder page, and the
Bookbuilder page is completely pink. No features are visible. Its all pink."

Creating a new issue

Of course, this example is a little silly, and you'll likely need to communicate
more detailed information than this. When doing so, remember you are writing
the information to help someone who is trying to help you. They can best help
you if you provide clear information so that they can best understand your
problem. For example, include contextual information that will help somebody
else understand the problem, such as: where in Editoria you are (Bookbuilder,
Wax editor..), what role you are when trying to perform the task (author,
copyeditor etc), and what you are trying to achieve.

A badly written bug report for the above issue provides none of this context
and information. You may have seen these kinds of reports, they look something
like this:

44 Bug Squashing

"Bookbuilder is broken."

These kind of reports are not very helpful; and above all else, when we �le a
bug report we are trying as best we can to be helpful.

If possible, giving additional information such as screenshots of the problem
(these are especially useful) and the name of the organization providing you an
Editoria instance, as well as the deployment's URL - and even the URL of the
page where you are experiencing the problem, can be incredibly helpful.
Additional information, such as your browser type and version, as well as
information about your computer's operating system, can be helpful too. Never
give login/password information as these bug reports are public. When adding
screenshots or diagrams (also useful) to the bug report, click the "attach a �le"
link and upload the image(s). The process of adding screenshots isn't intuitive,
but give it a try, and you'll get used to it!

Once again, bug reports are welcomed, and we thank you for giving your best
attempt to make them understandable by people who can �x them. If you are
someone who can �x bugs, please feel welcome to jump into the main repository
and try to �x some.

Bugs are seldom showstoppers. Please try to �nd workarounds, if you can,
and share them (in the comments on the bug) with others while the bug is being
identi�ed and �xed. Sometimes there are many ways to do things with Editoria,
and they aren't always obvious, so try a few things to see if you can solve your
problem using the so�ware in another way. We know this process can be
frustrating, so we thank you for your patience.

Please keep an eye on on your issue, particularly looking out for comments, as
this is where information related to the bug, including questions for you, may be
added. However, this area is not designed for chat or debate, so we try to keep
the noise level in this area to a minimum. (Mattermost is great for chatting,
though!) In general, if you want to be someone who is involved with bugs overall,
monitoring this space and adding helpful detail to bugs (regardless of who
entered them) is a valuable contribution. Sharing your expertise and experiences
will help move everyone forward.

Finding bugs is the �rst step to killing them, and submitting good bug
reports is extremely valuable. We look forward to your future bug reports!

Optimal Use Cases
for Editoria

13

Supported Work�ows

Editoria has already been used in two very di�erent work�ows that represent
the opposite extremes of a spectrum.

On one end of the spectrum is the traditional post-acquisition, linear
work�ow of a university press. In this work�ow, manuscripts accepted for
publication pass through sequential steps: project editor assessment,
copyediting, author review of editing, cleanup, and, �nally, export to the
composed book. This was Editoria's �rst use case (for University of California
Press), and when you install it, it is con�gured for this process.

On the other end of the spectrum is what we call a �at or concurrent
work�ow, used in Book Sprints, in which many authors work at the same time
on various chapters, each having the same capability to write and revise during
the same creative session.

Editoria can be used for both of these models, or for other work�ows that
might combine di�erent aspects of the two. As mentioned earlier, for example,
CDL is customizing Editoria to better suit a library use case. If you'd like help
�guring out how Editoria can optimize your work�ow or how to further extend
or customize Editoria, then reach out the the Editoria team and community for
help.

14

Types of Content

The word processing capabilities provided by Editoria's Wax editor (see the
chapter on editing in Wax) are quite sophisticated. Books created with Editoria
can include

�gures and images, with captions

tables and graphs, as images

links

code snippets

footnotes or backnotes

in-line notes

break ornaments

Unicode and other special characters

special formatting for blocks of text (e.g., epigraphs, extracts)

Editoria also supports many languages (both le�-to-right- and right-to-le�-
reading). Adding Unicode character sets to the Wax editor is relatively simple.

Editoria and Paged.js provide sophisticated, customizable controls over the
exported book in the form of CSS rules applied to the elements (titles, extracts,
headings, etc.), but since the exported book is generated in a rules-based
manner, custom tweaks to the layout of individual pages require some
experience in CSS book design. Future features in the Paged.js pagination
engine will make page-speci�c tweaks easier, and the Paged.js community is
organizing workshops to help publishers with this part of their process.

48 Types of Content

While the Editoria platform can be customized and expanded, if you wish to
do the layout in Editoria using Paged.js then it is best suited to text-and image-
centric books. In general, the less the content relies on special layouts and
highly customized pagination (as in an art book, for example), the better it will
�t Editoria's end-to-end work�ow at present. However, if necessary it is always
good to know you can export to InDesign ICML if necessary to support legacy
design work�ows (covered later in the book). In time this will become less and
less necessary as we add more and more features to Editoria and Paged.js.

15

Authors and Teams

Editoria can be used e�ectively by teams or individuals for a variety of
work�ows.

Single user

A single user can use Editoria to author, edit, and export to paginated format.
Text can either be uploaded from Word .docx �les or composed directly within
the Editoria platform.

Production team

With di�erent permissions con�gurations, Editoria can be a powerful
collaboration tool for teams to manage multiple people with di�erent roles.

Although Editoria does not support multiple users concurrently editing a
single chapter, it does allow for multiple users to work on separate chapters at
the same time, with each chapter locked to others while it is being edited. In
time, concurrent chapter editing will be added but most publishers in the
community prefer not to have it.

Editoria also supports multiple users with di�erent roles: author, production
editor, and copy editor (covered later in the book). A status bar shows where in
the production process each chapter is, and it controls the access each user has

50 Authors and Teams

to that chapter at any given moment, helping to prevent miscommunication or
stepping on someone else's toes. For instance, when the copy editor is working
on a given chapter, the author does not have permission to go in and make
changes to it; only when the copy editor has �nished and passed the permission
to the author can the author make changes to the chapter. Editing and revision
tools, such as track changes and margin comments for discussion, allow for
communication within the word processor.

Using Editoria

16

How It All Fits Together

Editoria comprises many parts. This chapter is a high-level look at the basics.
This is helpful for understanding the documentation that follows, and for adding
clarifying detail to any feature proposals you may make.

Login page

On the login page you can create a new account or log into an existing accoun t.

Login screen

Editoria 53

Dashboard

Once logged in, you will be at the Dashboard, which contains a list of all the
books to which you have access. If you have the appropriate privileges, you can
create, delete, or rename books here.

Dashboard

54 How It All Fits Together

Bookbuilder

When you click on edit next to the name of a book, you will go to the
Bookbuilder, which serves as a platform for uploading and organizing the
contents of the book, specifying pagination, and tracking work�ow status.

Bookbuilder

Editoria 55

Wax

Wax is the content editor for Editoria. Here is where you can edit and format
content, place images, and communicate with other members of the book team.
You can also create content in Wax.

Wax screen

56 How It All Fits Together

Paged.js

There are several ways to export your book, but here we mention only Paged.js,
as it is the sole tool with custom styling support built into Editoria at present. (
Later chapters cover the other formats you can export.) Paged.js is very
sophisticated, so we have included an entire section on how to use it later in the
book. That section is intended for those who want to or can already understand
and use CSS.

Paged.js screen in Editoria

17

The Mighty Dashboard

Once logged in, you will see the Dashboard. The Dashboard displays the list of
books to which you have access in Editoria. From here, users with the proper
permissions can edit, rename, or delete books.

Book dashboard

What you see and can do here depends on your role (covered later in this
book):

Administrators can see all books.

Production editors, copy editors, and authors can see only the books on
which they have a role.

58 The Mighty Dashboard

Administrators can add, rename, and delete any book and access any
book's Bookbuilder via the edit button.

Production editors can add, rename, and delete their books and access
their books' Bookbuilder via the edit button.

Copy editors and authors cannot rename or delete books. They can access
the Bookbuilder via the edit button.

18

Building Your Book

When you click on edit next to a book title in the Dashboard, you are taken to
the Bookbuilder. The Bookbuilder is where you organize your book. Here you
can either upload your Word �les or, if you are not working from a previously
written manuscript, create fresh, empty chapters directly in the Bookbuilder.

60 Building Your Book

Bookbuilder screen

Adding book components

New items

If you wish to create a new, empty part, chapter, or other book component in
Editoria, click add part or add chapter in the Bookbuilder's appropriate section.
From there, click edit and start writing! See the chapter on Wax for more details
about the editor.

Import

You can also import Microso� Word .docx manuscripts into Editoria. Files can
be uploaded individually or in a batch. If only some of your content is in Word
format, it may be best to upload the individual Word �les one at a time. To do so,
create a new, empty front- or backmatter component or body chapter and select

Editoria 61

upload word. A�er you choose a �le, its content will be converted to HTML (this
might take a minute or so) and made available in the new component.

Batch file upload

Multiple Microso� Word XML (.docx) �les can also be uploaded via the
Bookbuilder. Click on the upload word �les button at the top of the page. As
soon as you have chosen multiple .docx �les, sit back and watch the magic! New
chapters appear, forming the structure of the book, and the content is converted
from .docx to HTML, ready for editing.

Naming conventions for imported �les

The batch upload feature uses �le naming conventions to identify both the type
of component each �le will be (part, numbered chapter, unnumbered
component) and which division it will upload into (frontmatter, body,
backmatter). To make sure that your components are uploaded into the correct
division, you need to change the names of �les that you import into Editoria.
The rules are as follows:

Names of .docx �les that begin with "a" will be uploaded into
frontmatter.

Names of .docx �les that begin with "w" will be uploaded into
backmatter.

File names that start with any other letter will be uploaded into the body.

The �le order you created outside the system will be preserved in the
Bookbuilder.

Files uploaded into frontmatter and backmatter are generic book
components. The body has three categories of components: numbered chapters,
unnumbered chapters, and parts. Further rules can be applied to �les that
belong to the body, so that they can be correctly categorized. These rules are as
follows:

If there is an "00" anywhere in the �le name, the �le will become an
unnumbered chapter.

If the �le name has a " pt0" anywhere, it will become a part.

Otherwise, the �le will upload as a normal numbered chapter.

62 Building Your Book

The Bookbuilder will display the �le names as they are imported. Renaming
book components is not handled in the BookBuilder but inside the Wax editor.
Refer to the chapter on editing content for more detail.

Replacing MS Word macros

Cleanup operations on content are very o�en handled by editors through
Microso� Word macros. This section will explain how many common ones are
already handled automatically in Editoria during import.

The upload process, the typical �rst step in creating a book from author �les,
is done with XSweet, Coko's transformation tool to port the contents of Word
documents into Editoria. A Word �le's underlying markup is quite messy and
complex. Through a series of sequential steps (in discrete XSLT �les), XSweet
reduces the Word XML to only the useful information—the text, formatting,
semantic styles, notes, etc.—and converts it into HTML for Editoria.

However, XSweet does much more than simply extract content from .docx
�les—it is also a sophisticated tool for enhancing and manipulating text. Many
publishers rely heavily on Word macros, which can be a pain point: hard to
create, available for only certain machines, and needing maintenance with Word
version upgrades. In contrast, XSweet's chain-of-XSLTs architecture is designed
to make it easy to add and modify functionality, by editing existing steps,

Editoria 63

rearranging their order, or creating new steps. To illustrate what is possible,
here's a partial list of enhancements that exist today:

Recognize plain-text URLs and turn them into hyperlinks

Apply headings and semantic markup, based on visual formatting such as
font size and bold weight

Apply common copyediting cleanups to text as it is uploaded, such as
converting double spaces to single ones

Convert hyphens between numerals to en dashes

Remove any number of spaces before or a�er em dashes

Convert series of three periods to ellipses

Replace pairs of adjacent hyphens with em dashes

Convert en dashes surrounded on both sides by spaces to em dashes

Surround each equal sign with one space on either side

Remove spaces adjacent to tabs

Remove spaces at the beginning and end of paragraphs

Remove tabs at the end of paragraphs

Remove empty paragraphs

Convert single and double straight quotation marks and backticks to
smart quotation marks

Insert hair spaces between single and double quotation marks

Force punctuation marks to match the formatting of the previous word

For more information and comprehensive documentation about XSweet, visit
the XSweet website [http://xsweet.coko.foundation/] .

http://xsweet.coko.foundation/

64 Building Your Book

Indexing

A quick note on building indexes. While the table of contents is generated
automatically in Editoria during export by tools such as Paged.js (see later in the
book), the program currently has no tools for building an index. At present,
indexing must be done in the traditional way from a paginated PDF �le. In the
future, an indexing tool may be available in the Wax editor to mark up text and
automatically generate an index as part of the book's export.

19

Assigning the Book Team

For each book, the project editor assigns users to the team via the Team
Manager, determining their roles for that book. A participant's role determines
what access they will have to the components throughout the work�ow.

The Team Manager

The Team Manager is found in the Bookbuilder, just above the book title.

Team manager

66 Assigning the Book Team

By default, Editoria has the following roles in the system: admin, project
editor, copy editor, and author. We believe that these will cover most use cases
without any need for customization. However, should you need to accommodate
di�erent roles (as well as their corresponding titles) within a speci�c
organization, or the permissions granted to those roles, you can. Turn to the
Editoria community if you need assistance.

Admin

When Editoria is set up, a single administrator, or admin, must be created. The
admin has access to all parts of the application, from users to chapters and
books. The idea is that if you are an admin user, there is nothing you cannot do
in Editoria. However, this role is not meant to be an active participant in the
book project. It is most likely to be occupied by a member of an organization's
IT department or a managing editor, who should be able to have the permissions
to help other users out.

Production editor

Sometimes also referred to as project editors, production editors have the
highest level of permissions of all the roles that actively participate in Editoria
book projects. They can create new books, as well as manage books that are
assigned to them.

A production editor who creates a new book automatically becomes the
production editor for that book.

Production editors also have the ability to manage teams that are working on
their books. They can assign a copy editor or add an author. They also have a
certain level of granular control over who can do what when, through the
work�ow status tool for each chapter. For example, a production editor can
make sure that an author does not have write access to a chapter until a�er the
copy editor has done a pass on that chapter. Production editors can also turn on
track changes for any stage, so that no changes go unnoticed.

Editoria 67

Finally, project editors can at all times create, upload, delete, and add content
to components.

Copy editor

Copy editors are assigned to books by production editors. The role is de�ned at
the book level, meaning that a person is a copy editor for only the books to
which they have been assigned as a copy editor.

Copy editors have book access similar to that of project editors but are
slightly more constrained. They see only the books that they are assigned to, of
course. They have write access to book components only during the edit and
cleanup stages of each component. Copy editors cannot access the Team
Manager, and thus cannot assign other users to their books.

Like project editors, copy editors can add new components to a book and turn
track changes on or o�.

Author

The role of author is the most restrictive. Like copy editors, authors see on their
Dashboards only the books that a project editor has assigned them to. They do
not have write access to a book's components until the project editor has
advanced the work�ow status to "Reviewing." When an author has write access
to a component, the changes to it are always tracked.

General access

All users can add comments to a component in the Wax editor, even if they don't
have permission to edit the content itself. This way, users can have a discussion
around the text regardless of their permissions at any stage of the production
process.

68 Assigning the Book Team

To reiterate the point that was made at the beginning of this chapter, the
above roles and permissions are what UC Press and the Coko team have found
to be sensible defaults. This does not mean that they are written in stone or that
they cannot be bent (or changed completely) to �t another organization's
di�erent needs. However to do this you will need some help, and the Editoria
team and community is here for exactly this.

20

Editing Content

A�er uploading your �les or creating empty components, you are ready to move
to the editing stage. In the Bookbuilder you can click edit and you will be taken
into Wax, the web-based word processor that is built into Editoria.

If you imported �les, all the content and the document structure that the
Word-to-HTML conversion picked up (e.g., line breaks, character formatting)
will be represented here.

Its important to understand that Wax provides an environment that looks
similar to a book's �nal design (e.g., heading formatting is distinct), but it is not
an exact WYSIWYG interface. The main di�erence is that additional space is
present in Wax to accommodate features such as track changes and
commenting. On a �nal export, these features are not needed and will not
appear. To see what the �nished book will look like, export the book from the
Bookbuilder.

Only one user can edit a component (e.g., part, chapter) at a time in Wax, and
some tools and functionality might di�er depending on the permissions setup
and the current role assigned to the user.

So what can you do in Wax?

70 Editing Content

Wax

Styling

On the le�-hand side of the screen is a panel with all the block or paragraph
styles that can be applied to your content. These named styles apply the correct
semantic markup to each element.

In order for the exporter to correctly identify and display di�erent elements,
the correct corresponding styles need to applied in the editor. Applying the
correct named styles is both easy and necessary.

Renaming components

Applying the title style will not only mark up the selection, but will also rename
the current component in the Bookbuilder.

Editoria 71

Component names in the Bookbuilder can only be changed through applying
this style in the editor on a selection. This is done so that Editoria can guarantee
that what you see in the Bookbuilder is exactly the same as what exists in the
content itself.

Formatting and inserts

Above the editor is a toolbar with character and in-line styles. The current
character formatting options are bold, italics, small caps, superscript, and
subscript. There are also tools for inserting hyperlinks, ornaments, and special
characters; highlighting text; and adding syntax-highlighted code snippets.

Illustrations

Images (including �gures and illustrations) can be added from the toolbar, and
each can have a caption. If you want a caption, it is important to use the image's
caption interface rather than writing a free sentence under the image. This will
enable Editoria to use the correct design speci�cations when exporting to PDF,
etc.

Notes

Notes are displayed at the bottom of the screen. The size of the notes panel can
be modi�ed by dragging the horizontal line separating it from the general text.

72 Editing Content

Notes

The formatting toolbar contains a button for inserting a note where the
cursor is in the text. This will create a note reference in the text and open an
appropriately numbered note in the notes panel. Deleting a note reference will
also delete the note itself. Subsequent notes will automatically renumber. You
can also insert note references inside another note's text.

While the Wax interface shows notes at the bottom of the screen, upon export
all notes will appear at the back of the �nished book rather than at the foot of
the page or at the end of each chapter.

Track changes

When turned on (and not everyone can turn track changes on or o�—covered
later in this book), the track changes feature tracking text that is added, deleted,
or moved. Inserted text is blue; deleted text is red and struck through. In �le

Editoria 73

preparation and copy editing, the feature may be turned o� by the production or
copy editor.

Hovering over a change displays the name of the user who made the change.
A future modi�cation may be to assign di�erent colors to edits according to the
users' roles.

To see what the text would look like if all changes were accepted, the markup
can be temporarily hidden. This is a purely visual aid and has no e�ect on the
actual content.

Comments

Authors and editors can communicate with each other by using the Wax
comments feature. Selecting text will make a comment bubble appe ar to the
right. Clicking on it will open a writing area. Type in your text and hit the return
key to save your comment (if you click outside the comment window before
hitting return, your comment will be lost).

Keyboard shortcuts

There are a number of keyboard shortcuts mapped to di�erent functions of the
Wax word processor. Click on the question mark on the formatting toolbar to
see the current list.

Search and replace

Click on the toolbar's magnifying-glass icon to open Wax's search and replace
window.

74 Editing Content

Full-screen mode

This view provides more space for your writing surface, especially useful for
laptops with small screens. Click on the Fullscreen icon on the formatting
toolbar to toggle this view.

Wax can be con�gured to have di�erent combinations of tools and styles or to
have custom functionality added to it. Turn to the Editoria community if you
need a modi�ed version of the editor.

Wax, if you are interested, was named at a Coko team meeting in Athens,
Greece, a�er the reusable wax tablets the ancients greeks used to write
on...which are, arguably, the �rst text editors.

21

Managing Work�ow

A status tracker in the Bookbuilder traces the progress of each book component
as it moves through an editorial work�ow, from upload to �nal export-ready
form. When an assigned participant completes a work stage, they use the tracker
to move the component to the next stage, then notify the next work�ow
participant that they may begin work on that stage. Underlying each stage are
permissions that govern who can advance the status. Hover over a component's
status tracker to display all the steps in the work�ow.

Work�ow status tracker

76 Managing Work�ow

UC Press uses the following work�ow stages:

Upload

File prep

Edit

Review

Cleanup

Page check

Final

Below is a detailed explanation of this work�ow and how the status tracker
controls user permissions throughout the process.

Baseline permissions

Whenever a user does not have permission to edit a component, the edit button
changes to a view button, which opens the Wax editor in read-only mode.

All users can always leave comments, regardless of whether they currently
have permission to edit. All users can also always toggle whether tracked
changes are visible or hidden (this is not the same as turning tracked changes on
or o�).

Production editors can always edit a component and can always advance or
roll back its status. Production editors and copy editors can style whenever they
can edit; authors can never apply styling.

A warning appears anytime a user is about to advance a component's
work�ow status to a state they cannot roll back.

Editoria 77

Workflow stages and permissions

Upload

Only production editors and copy editors can create new components. Both can
also batch-upload Word �les or add individual components and upload Word
�les into them. Once an upload is complete, the status tracker automatically
advances from Upload to File Prep.

Only production editors can open a new component in the Wax editor and
add content—the copy editor can upload but cannot edit directly in this stage.
Once a production editor saves some text in a component, the status tracker
advances to File Prep.

File Prep

During File Prep, the production editor semantically tags the content using the
le�-hand styling pane, makes any desired edits, and leaves comments,
instructions, or queries for the copy editor or author. The production editor can
also toggle tracked changes on and o� .

During this stage, copy editors and authors cannot edit the component or
advance its status to Edit. Only the production editor can specify that File Prep
is complete, by advancing the status to Edit. This grants the copy editor
permission to begin working on the component.

Edit

The Edit stage is where the copy editor does the majority of the copyediting,
leaving notes or queries for the author as desired. The copy editor can toggle
tracked changes on and o�, either tracking changes for the author to review or
making them silently (small grammatical �xes, for example, don't need to be
called out for the author to see). Once the copyediting is complete, the copy
editor advances the component's status to Review, at which point they can no
longer edit. Simultaneously, the author is granted editing permission and can
begin reviewing the copyediting.

78 Managing Work�ow

The author cannot advance the status from Edit to Review—the copy editor
must be the one to certify that this stage is complete.

Review

In the Review phase, the author reviews any tracked changes and comments
from the copy editor and the production editor. The author can edit, but tracked
changes is locked on in this stage. This ensures that any changes the author
makes will be visible to the copy editor and the production editor. The copy
editor cannot edit during the Review stage.

As the author reviews the text, the previous and next tracked change
commands assist in moving quickly through the edits and accepting changes
with which the author agrees. If the author is happy with all the edits in a block
of text, they can select and accept multiple changes at once. Accepting a change
is the author's con�rmation of consenting to the edit.

The author cannot reject tracked changes from the editors; otherwise, the
author could undo the editors' work. Instead, an author who does not agree with
a proposed change leaves a comment on it to reject the change or to discuss it
with the editors. Authors also cannot accept their own changes, as that would
defeat the purpose of locking tracked changes on.

When the author's review is complete, they pass the component back to the
copy editor by advancing the status to Clean Up. The copy editor can also
advance move this stage to complete on behalf of the author, if the author
indicates he or she is done, but hasn't advance the status. The author can then
no longer edit the component or change its status.

Clean Up

The copy editor regains editing permissions, including toggling track changes,
during Clean Up. This is the stage when they review any comments from the
author and resolve any outstanding issues. If necessary, the copy editor can roll
the status back to Review so the author can make or review further edits.

Once the component is clean, with no tracked changes or comments, the copy
editor advances its status to Page Check.

Editoria 79

Page Check

Page Check is an open-ended stage at the end of the work�ow for �nal changes
or review following the copy editor's cleanup. Only the production editor has
editing permission at this stage.

The production editor can roll the status back to Clean Up if necessary, but
only the production editor can advance the stage to Final, indicating that the
component is ready for export.

Final

Ready for export! Only the production editor can roll the status back from �nal.

22

Exporting to Various Book
Formats

Editoria already includes the capacity to export to EPUB and to paginated
previews that you can save as PDFs. But since it uses semantic HTML to manage
the content of the book, it's the perfect starting point for exporting to any �le
format.

Editoria 81

Editoria can export to multiple book formats

PDF

To export a PDF from Editoria, simply select an exporter from the export book
dropdown in the Bookbuilder, then select go to preview the book in your
browser using either Vivliostyle or Paged.js. In the Vivliostyle preview, use
Chrome's browser print dialog to generate a PDF. In the Paged.js preview, use
the Print link on the page to trigger Chrome's print dialog for the paginated
book. For both, be sure to set "Margins" to "none" and select "Background
graphics" for a 1:1 PDF. Then you can save as a PDF. You can also use any
pagination engine as an alternative.

82 Exporting to Various Book Formats

EPUB

You can also download an EPUB copy of your book from Editoria. EPUB �les
are self-contained, with text, images, fonts, and styles. The format is an open
standard for electronic books that can be read by e-readers without the need to
retrieve content from the web.

Other options

Since EPUB includes all the necessary data, it's also a good starting point for
transforming a book into a variety of other �le formats, using a tool such as
Pandoc, the Swiss Army knife of converting any marked-up �le format. If you
have book content produced with Editoria and you want to give it to a designer
who works in InDesign, a�er downloading an EPUB copy and installing Pandoc
[https://pandoc.org/] , you can transform your EPUB �le into an ICML �le,
Adobe's InCopy �le format, which InDesign can use, retaining styles names and
markups.

pandoc -f epub -t icml -o book.icml epubname

Pandoc supports many kinds of exports and retains the formatting for the
languages that handle semantics (such as Markdown or HTML) within each
export, making it easy to transform the content.

https://pandoc.org/

23

Extra Admin Features

On the Dashboard, admins (administrators) have an additional option on the
le�-hand side of the top navigation bar. (see the chapter on assigning the book
team for the basic admin role.) When an admin click on users, a list of all
registered users and their email addresses appears. Anyone listed here is
available to production editors for assignment to roles on book teams.

Admin view of users

There is a caveat for new installations of Editoria: because roles are speci�c
to books rather than to users, Editoria will not consider a user a production
editor (and thus able to create books on the Dashboard) unless that user is
assigned to at least one book as a production editor. The easiest way to
accomplish this is for the admin to set up a dummy book and add all users who
should be the production editor on any book as production editors on this book.

84 Extra Admin Features

A�erward, these users will be able to add new books to Editoria. As soon as
they've each created a book (and been automatically assigned as the production
editor for that book), they can be removed from the dummy book and still retain
their permissions.

24

A Rapid Book Production
Example

The previous chapters in this section describe how Editoria works for the UC
Press work�ow, which is Editoria's default. This book, however, was created
with a version of Editoria supporting a Book Sprint work�ow. In this version,
permissions are di�erent: no one is assigned the copy editor role, and several
features of the Bookbuilder and the Wax editor are turned o� (track changes, for
example).

The point is, not only can Editoria be extended with new features, but what is
already there can be customized to better suit di�erent work�ows. This is both a
complex topic and, currently, a complex undertaking, since such tweaks will
need the help of a developer, and there are no point-and-click interfaces (yet) to
assist with these kinds of con�guration. However, it is possible to con�gure
Editoria, and if you wish to do so, then ask the Editoria community how to
approach this.

At a later date, there will be simple point-and-click interfaces that will enable
customization of Editoria to the nth degree. We will get there, and maybe you
will help. But in the meantime, the default setup is capable of supporting a lot of
work�ows. If you aren't sure about yours, reach out to the team and the
community and ask for advice.

86 A Rapid Book Production Example

Editoria supports rapid book production with Book Sprints

The Magical
Paged.js

25

Automated Typesetting inside
the Browser

Publishing has come a long way since its early days, when composing a page was
about arranging tiny pieces of lead on a printing press to create readable text on
a page. However, the paradigm of the printed page still dominates online
publishing.

Not only does publishing now not require circulating a hard copy of a
document, but digital publishing means that content is not bound to its styling
anymore, thanks to standardized markup languages. This is exactly what's
happening with web-based publishing: a markup language (HTML) de�nes the
content of a document in a semantic way, and a styling language (CSS) is used to
format this content.

When a browser renders the content of a web page, it's doing a couple of
di�erent tasks: It starts by reading the HTML markup and co-relating the styles
from a CSS �le to the content. Once it does that, it automatically applies the
design specs (typesets) to the content on the page.

Consequently, when you look at a web page, you're looking at so-called
automated typeset content. And this is what Editoria uses to make layouts in the
browser.

Web designers create rules in CSS style sheets that describe the way types of
content should appear. These rules can be reused, which can save designers an
enormous amount of time that would otherwise be spent repeating the manual
application of specs over and over again. However, there are inevitably
exceptions to the rules—something doesn't look quite right, etc.—so some

Editoria 89

elements of automated typesetting are usually (but not always) overwritten with
bespoke rules.

The following chapters explain how to use CSS to design books using
Paged.js. This is important information, but please be aware that this content is
not for everyone. The target audience includes designers familiar with CSS who
wish to design books.

26

Designing with Paged Media

When content is prepared in Editoria, each component is presented as a
continuous scroll of text and images. To print this as a book means fragmenting
the content into �xed-size pages, �owing the content from page to page.

Scroll to paginated text

Additionally, a CSS style sheet is necessary for designing web pages for print.
To de�ne print styles, you must include the @print declaration within your
HTML �le or linked style sheet. The styles declared in this media query will be
applied only when the web page is printed from the browser print dialog and

Editoria 91

saved as a PDF. All the usual CSS speci�cations can declare font size, margins,
and paddings of elements, colors, styles, etc.

It sounds simple, but designing a book or a print-ready PDF requires
thinking about web content in terms of pages. This requires a web designer to
perform quite a mental �ip, from formatting for the screen to formatting for
print PDF.

Pagination

In CSS, the way to fragment the content into pages is described in a World Wide
Web Consortium (W3C) speci�cation module called the CSS Paged Media
Module Level 3 [https://www.w3.org/TR/css3-page/] .

This module was created to deal with printed matter and Paged Media, and it
proposes some basic pagination control features, such as page margins, page
size, and orientation. The module also covers other speci�c book features,
outlined below.

The CSS Paged Media Module describes the way a page model partitions a
scroll �ow into discrete pages. A section of the HTML content is associated
with a named page model in the CSS. The speci�c page layout is applied when
this element of the section is encountered. A document can have several
di�erent page models. When �nal output is rendered, pages are automatically
created until all the content of the relative sections has been exhausted. It works
like this:

https://www.w3.org/TR/css3-page/

92 Designing with Paged Media

How CSS Paged Media works

The page model speci�es how a document is formatted within a rectangular
area, called the page box, de�ned with the @page rule. This rule allows for
speci�cation of various aspects of the page model, such as dimensions,
orientation, margins, cropping, and print marks.

Layout

Physical books also have speci�c print artifacts that aid the reader's navigation:
a table of contents, running headers and footers, page numbers, indexes, and so
on.

These artifacts are not directly encoded in the content but rather
automatically added by the rules de�ned in the CSS. For print it is also necessary
to size and position the content to match the page and to break content in an
appropriate way to support the meaning of the text.

Editoria 93

These features are spread across several CSS modules:

CSS Generated Content for Paged Media Module [https://www.w3.org/TR/
css-gcpm-3/] de�nes special requirements for the display of printed
document content: running headers and footers, footnotes, generated text
for cross-references or a table of contents, PDF bookmarks, etc.

CSS Fragmentation Module Level 3 [https://www.w3.org/TR/css-break-3/]
de�nes how and where CSS boxes can be fragmented, including across
page breaks.

CSS page �oats [https://www.w3.org/TR/css-page-�oats-3/#terms] de�nes
how an element is to be removed from the normal �ow and placed in a
di�erent location on the page.

Print previews

Support for CSS Paged Media and other modules in Editoria is handled by
Paged.js, allowing for a preview of the print styles in the browser before printing
to PDF. Paged.js is developed and maintained by the Paged Media Initiative [htt
p://www.pagedmedia.org/] , a gathering of people who produce books with web
technologies.

Given that browser support does not yet exist for many Paged Media features,
Paged.js implements poly�lls (code that implements a feature on web browsers
that do not support the feature) by parsing the CSS style sheets and fragmenting
the content into pages using JavaScript. This also allows for extending
supported features with other JavaScript libraries, such as custom hyphenation
settings or a math typesetting library.

Thankfully, browser developers have already taken some interest in
implementing parts of the Paged Media standards, and @page rules have partial
support in Chromium and Chrome, giving the minimal needed support to
generate PDFs from the Paged.js output.

Working within the browser gives access to extensive debugging tools for live
style modi�cations and testing changes on the �y. While supporting the same
W3C speci�cations, other tools use proprietary desktop rendering engines,
forcing you to rerender the entire PDF with each change and making even the

https://www.w3.org/TR/css-gcpm-3/
https://www.w3.org/TR/css-break-3/
https://www.w3.org/TR/css-page-floats-3/#terms
http://www.pagedmedia.org/

94 Designing with Paged Media

simplest design edit time consuming. When Paged.js is used in browsers, it's
possible to have access to the very latest support for CSS features.

27

Paged Media Support with
Paged.js

Editoria includes multiple export options. The default method of handling page
design and layout uses Paged.js.

The print export of the book's content uses CSS print speci�cations
supported by Paged.js, making it possible to preview the print styles directly in
the browser (see the previous chapter for more details). The browser print dialog
is then used to create the PDF.

Paged.js is under active development, so the list of supported features is
growing quickly. You can �nd further setup and extension documentation on
Paged Media's GitLab [https://gitlab.pagedmedia.org/] , as well as �le reports for
any issues you may run into. However, the best way to reach out is to join the
Paged.js community in the chat room on the Paged Media's Mattermost. [https://
mattermost.pagedmedia.org/]

Page rules

The page rules must be set up in the @print media query.

https://gitlab.pagedmedia.org/
https://mattermost.pagedmedia.org/

96 Paged Media Support with Paged.js

@print{
 /* write the page rules here */
}

Size

The size of the pages in a book can be de�ned by either width and height (in
inches or millimeters) or a paper size such as A5 or Letter. It must be the same
for all the pages in the book and will be inferred only from the root @page.

@page {
 size: A5;
}

or

@page {
 size: 140mm 200mm;
}

Margins

The margin command de�nes the top, bottom, le�, and right areas around the
page's content.

@page {
 margin: 1in 2in .5in 2in;
}

Names

Single pages or groups can be named, for instance as "cover" or "backmatter."
Named pages can have their own, more speci�c, styles and margins, and even
di�erent styles from the main rule.

@page backmatter {
 margin: 20mm 30mm;
 background: yellow;
}

Editoria 97

In HTML, these page groups are de�ned by adding the page name to a CSS
selector.

section.backmatter {
 page: backmatter;
}

Page selectors

Blank pages

The blank selector styles pages that have no content, e.g., pages automatically
added to make sure a new chapter begins on the desired le� or right page.

@page :blank {
 @top-left { content: none; }
}

First page and nth page

There are selectors for styling the �rst page or a speci�c page, targeted by its
number (named n in the speci�cation).

@page :�rst {
 background: yellow;
}

@page :nth(5) {
 margin: 2in;
}

Left and right or recto and verso
Typically, pages across a spread (a pair of pages) have symmetrical margins and
are centered on the gutter. If, however, the inner margin needs to be larger or
smaller, the selector to style le� and right pages can make that change.

@page :left {
 margin-right: 2in;
}

98 Paged Media Support with Paged.js

@page :right {
 margin-left: 2in;
}

Margin boxes

The margins of a page are divided into sixteen named boxes, each with its own
border, padding, and content area. They're set within the @page query. A box is
named based on its position: for example, @top-left, @bottom-right-corner, or
@left-middle (see all rules [https://www.w3.org/TR/css3-page/#margin-boxes]).
By default, the size is determined by the page area. Margin boxes are typically
used to display running headers, running footers, page numbers, and other
content more likely to be found in a book than on a website. The content of the
box is governed by CSS properties.

Automatically generated margin boxes

https://www.w3.org/TR/css3-page/#margin-boxes

Editoria 99

To select these margin boxes and add content to them, use the following
example:

@page {
 @top-center {
 content: "Moby-Dick";
 }
}

Generated content

CSS counters

css-counter is a CSS property that lets you count elements within your content.
For example, you might want to add a number before each �gure caption. To do
so, you would reset the counter for the <body> , increment it any time a caption
appears in the content, and display that number in a ::before pseudo-element.

body {
 counter-reset: �gureNumber;
}

�gcaption {
 counter-increment: �gureNumber;
}

�gcaption::before {
 content: counter(�gureNumber)
}

Page-based counters

To de�ne page numbers, paged.js uses a CSS counter that gets incremented for
each new page.

To insert a page number on a page or retrieve the total number of pages in a
document, the W3C proposes a speci�c counter named page. The counters
declaration must be used within a content property in the margin-boxes
declaration. The following example declares the page number in the bottom-le�
box:

100 Paged Media Support with Paged.js

@page {
 @bottom-left {
 content: counter(page);
 }
}

You can also add a bit of text before the page number:

@page {
 @bottom-left {
 content: "page " counter(page);
 }
}

To tally the total number of pages in your document, write this:

@page {
 @bottom-left {
 content: counter(pages);
 }
}

Repeated elements on di�erent pages

Named string

Named strings are used to create running headers and footers: they copy text for
reuse in margin boxes.

First, the text content of the element is cloned into a named string using
string-set with a custom identi�er (in the code below we call it "title," but you
can name it whatever makes sense as a variable). In the following example, each
time a new <h1> appears in the HTML, the content of the named string gets
updated with the text of that <h1>.

h1 { string-set: title content(text) }

Editoria 101

Next, the string() function copies the value of a named string to the
document, via the content property.

@page {
 @bottom-left {
 content: string(title)
 }
}

Running elements

Running elements are another way to create running headers and footers. Here
the content, complete with style and structure, is copied from the text, assigned
a custom identi�er, and placed inside a margin box. This is useful for formatted
text such as a word in italics.

The element's position is set:

.title {
 position: running(title);
}

Then it is placed into a margin box with the element() value via the content
property:

@page {
 @top-center {
 content: element(title)
 }
}

Controlling text fragmentation with page breaks

Sometimes there is a need to de�ne how content gets divided into pages based
on markup. To do so, paged media speci�cations include break-before, beak-
inside, and break-after properties.

102 Paged Media Support with Paged.js

break-before adds a page break before the element; break-after adds a page
break a�er the element.

Here is the list of options:

break-before: page pushes the element (and the following content) to the
next available page

break-before: right pushes the element to the next right page

break-before: left pushes the element to the next le� page

break-before: recto pushes the element to the next recto page

break-before: verso pushes the element to the next verso page

break-before: avoid ensures that no page break appears between two
speci�ed elements

For example, this sequence will create a page break before each h1 element:

h1 {
 break-before: page;
}

This code, in contrast, will push the h1 to the next right page, creating a blank
page if needed:

h1 {
 break-before: right;
}

This snippet will keep any HTML element that comes a�er an h1 on the same
page as the h1, moving them both to the next page if necessary.

h1 {
 break-after: avoid;
}

Editoria 103

The last option is the break-inside property, which ensures that the element
won't be separated across multiple pages. If you want to be sure that your block
quotes will never be divided, write this:

blockquote {
 break-inside: avoid;
}

Cross-references

To build items such as an index or a table of contents, the export function has to
�nd the pages on which the relevant elements appear inside the book. To do so,
paged media speci�cations include a target-counter property.

For cross-references, links are used that target anchors in the book:

<p>see the Title of the chapter</p>

Later in the book, the chapter title will appear with the anchor, set using an
ID property.

<h1 id="anchor-name">title of the chapter</h1>

The target-counter property is used in ::before and ::after pseudo-
elements and set into the content property. As a page counter, it can include
some text:

a::after {
 content: ", page " target-counter(attr(href), page);
}

In the PDF, this code will be rendered as "see the Title of the chapter, page
12".

28

Extending Paged.js

There are several ways to extend the rendering of Paged.js. Selecting the best
method will depend on how the code will be called and what it needs to access.

When creating a script or library that is speci�cally aimed at extending the
functionality of paged.js, it is best to use hooks and a handler class.

Paged.js has various points in the parsing of content, transforming of CSS,
rendering, and layout of HTML that you can hook into and make changes to
before further code is run.

A handler is a JavaScript class that de�nes functions that are called when a
hook in Paged.js is ready to defer to your code. All of the core modules for
support of paged media speci�cations and generated content are implemented
as handlers. To create your own handler, you extend this same handler class.

class MyHandler extends Paged.Handler {
 constructor(chunker, polisher, caller) {
 super(chunker, polisher, caller);
 }
}

The handler also exposes the underlying tools for fragmenting text (Chunker)
and transforming CSS (Polisher)—see below.

Within this class, you can de�ne methods for each of the hooks, and specify
when they will be run in the code. A return that is asynchronous will delay the
next code using await.

Editoria 105

class MyHandler extends Paged.Handler {
 constructor(chunker, polisher, caller) {
 super(chunker, polisher, caller);
 }

 afterPageLayout(pageFragment, page, breakToken) {
 console.log(pageFragment, page, breakToken);
 }
}

Paged.js contains the following asynchronous hooks:

Chunker

beforeParsed(content runs on content before it is parsed and given IDs

afterParsed(parsed) runs a�er the content has been parsed but before
rendering has started

beforePageLayout(page) runs when a new page has been created

afterPageLayout(pageElement, page, breakToken) runs a�er a single page
has gone through layout, and allows adjusting the breakToken

afterRendered(pages) runs a�er all pages have �nished rendering

Polisher

beforeTreeParse(text, sheet) runs on the text of the style sheet

onUrl(urlNode) runs any time a CSS URL is parsed.

onAtPage(atPageNode) runs any time a CSS @page is parsed

onRule(ruleNode) runs any time a CSS rule is parsed

onDeclaration(declarationNode, ruleNode) runs any time a CSS
declaration is parsed

onContent(contentNode, declarationNode, ruleNode) runs any time a CSS
content declaration is parsed

Finally, the new handler needs to be registed in order to be used.

106 Extending Paged.js

Paged.registerHandlers(MyHandler);

This can be registered anytime before the preview has started and will persist
through any instances of Paged.Previewer that are created.

If a JavaScript library, such as MathJax, needs access to the content before it
is paginated, you can delay pagination until that script has completed its work.
This will give the library full access to the content of the book but has the
disadvantage of needing to render the entire book before rendering each page,
which can cause a signi�cant delay.

Given that the poly�ll will remove the page contents as soon as possible,
adding a window.PagedConfig will allow you to pass a Promise that will delay until
it is resolved.

let promise = new Promise((resolve, reject) {
 someLongTask(resolve);
});

window.PagedCon�g = {
 before: () => {
 return promise;
 }
};

It is also possible to delay rendering of the poly�ll until called by passing
auto: false.

window.PagedCon�g = {
 auto: false
};

window.PagedPoly�ll.preview();

When the Previewer class is used directly, the preview() method can be called
at any point that is appropriate.

The Future

29

What's Next for the
Technology?

Editoria is excellent as-is, but is also in�nitely customizable.

Editoria is already an elegant application: it's simple, with some impressive
book production tools. Better yet, the architecture and technologies on which it
is built point to an interesting future.

Editoria 109

Wax

Until recently, it was not possible to build a sophisticated web-based editing and
word processing tool such as Wax. However, web-based editing frameworks are
coming of age, and Wax leverages them to deliver �nely tuned interaction
controls and granular management of the underlying content source necessary
for word processing. It is, a�er all, word processing that publishers need—not
just editing. The good news is that the Coko team also built Wax to be modular
and con�gurable.

What's special about Wax is the ability to introduce incremental
improvements on top of a sophisticated base framework, which radically reduces
the development necessary for new features. The fact that Wax is web-based
means that it is networked to many resources beyond its own word processing
features. In the future, it may well be developed to allow design modi�cations, to
build indexes, and to create interative elements such as adjustable diagrams.

Paged.js

Of course, there are other tools that can take HTML and render it to PDF, but
none, open source or proprietary, takes the smart approach that Paged.js does.
This tool follows the CSS standards that are accepted by the W3C but not yet
implemented in the browser. The overarching strategy of Paged.js is to make
itself redundant by proving the use case of making books in browsers to the
people who make the browsers. This will take a while, but thankfully, in the
meantime you can continue to use Paged.js to create layouts. Additionally,
Paged.js, unlike any other tool, allows you to render the paged content in the
browser and through a command-line batch processor, so you can preview the
content live in the browser. Style the content, reload, render—as many times as
you need to. As with Wax, the architecture of Paged.js is deliberately modular; it
can be extended by small modules written in JavaScript to achieve typesetting
and layout functions to meet your needs.

110 What's Next for the Technology?

XSweet

Other tools used to convert .docx to HTML are written in obscure languages, are
incomplete, use overly verbose and complex intermediary �le conversion
formats, are badly mantained, or are badly architected. The Coko team has
looked around this �eld for many years, hoping for the right tool to mature.
Unfortunately, it never appeared, so we had to build it ourselves, enlisting some
of the top talent in the �le conversion sector to do the job. As a result, XSweet is
a sophisticated tool with high conversion �delity. And yes, it too is modular and
extensible.

PubSweet

Editoria is built on top of PubSweet, a cutting-edge, "headless" CMS that
enables the construction of any kind of publishing work�ow atop its very sturdy
foundations. It is the underlying technology common to all the publishing
platforms coming out of the Coko community, including Editoria and journal
platforms under development by eLife and Hindawi. It is the workhorse of the
growing open publishing infrastructure movement. PubSweet is important for
Editoria because it allows developers to extend the highly modular architecure
at will. Want to plug in a new set of roles and permissions? You can! Want to
add a new interface for asset management or title management? Go ahead!

The Future

This technology is the best available today, and it is all open source. You own it.
You can do whatever you like with it. You are handed a powerful, extensible
framework for publishing any kind of content you like. Editoria handles books
but can take you beyond books. It is designed not only to optimize your present
work�ow but to give you the best foundations for future innovations.

Editoria 111

There are many features that we are either working on or planning to work
on. Versioning of books is one example—it would be great if you could version
chapters and books, navigate easily between editions, and improve or add
content while retaining an understanding of the history of how the book has
evolved. You could also mark versions as �nal for an edition or even archive
them without removing them from the system. Furthermore, users could
manage stored output of a PDF or EPUB to ensure that new editions are based
on the precise content that was exported from the system years ago.

Various versions of chat or discussion-list integration have been considered
in detail. This could help teams discuss and resolve issues quickly. Connected to
this are many possible features that could extend the functionality of comments
and annotations to serve a similar purpose.

A newer version of Wax, our word processor, will introduce features that are
currently not there, such as creating and editing tables and nested lists.
Concurrent editing of chapters has already been named as a wish. We want to
include image editors as well.

We also foresee integration with external services such as Title Management
and other metadata managers and publishing channels including sales channels
like Amazon and open source platforms such as Manifold and Fulcrum. We also
want to support a wider variety of �le outputs (e.g., .mobi, .odt). Math
integration and authoring is on the near horizon too. Asset management and art
work�ow interfaces are high on our list. What about a translation interface? The
sky's the limit!

An interactive administrator panel could let you customize your application's
con�guration more easily and, more importantly, without the need for a
developer in many cases. A pro�le manager could also provide a useful tool for
users to manage their personal data.

Get involved

If any of these ideas piques your interest, get involved in the Editoria community
today! Imagine if you and ten other imaginative users immediately started
working together on improvements—the system could grow by leaps and
bounds very quickly!

Glossary

Bookbuilder — The screen in Editoria where a book's components are
assembled and managed.

CMS (Content Management System) — A so�ware application or set of
related programs that are used to create and manage digital content.

Coko — Shorthand for Collaborative Knowledge Foundation, the technology
and community facilitation providers for Editoria.

Community — Anyone interested in actively participating to move Editoria
forward.

CSS (Cascading Style Sheets) — Code that applies formatting to text and
elements a�ecting how those display on a screen or paper.

Dashboard — The screen in Editoria where a user chooses which book to
work on.

Editoria — An open source, community-owned, browser-based book
production tool. For an extended de�nition, see the beginning of this book.

Export — Moving from HTML to �xed, publication-ready outputs (examples
include EPUB and PDF).

Flat work�ow — A work�ow with few permission restrictions, enabling rapid
collaboration, rather than rigid, granular permission controls (example: Book
Sprints).

G&T (Gin & Tonic) — Writers' fuel.

Import — The ingest of �les from a desktop or external platform into
Editoria. Editoria's process ingests Microso� Word XML (.docx) �les and
converts them to HTML for formatting, editing, and further re�nement in the
Wax editor.

Infrastructure — This generally refers to the digital publishing infrastructure
used by publishers to execute publishing functions. It's the foundation of

Editoria 113

publishing activity, o�en described as a pipeline. The Gutenberg press is one of
the earliest examples of publishing infrastructure; Editoria is one of the latest.

Library publishing — The set of activities led by college and university
libraries to support the creation, dissemination, and curation of scholarly,
creative, and educational works. It is distinguished from other publishing �elds
by a preference for open access dissemination and a willingness to embrace
informal and experimental forms of scholarly communication and to challenge
the status quo. Learn more on the website of the Library Publishing Coalition.

Linear work�ow — A work�ow in which permissions are granular and roles
are speci�cally de�ned (e.g. production editor, copy editor) in relation to a stage
in the book production process.

Paged Media — A W3C standard for paginating content in browsers. It is also
the name of the initiative working on Paged.js.

Paged Media Initiative — A community sharing experiments and knowledge
about printing documents and books using web technology. Learn more on the
Paged Media Initiative blog.

Paged.js — A javascript toolkit, developed by the Paged Media Initiative, that
is an integrated export option from Editoria. It works as the poly�ll for the
Paged Media W3C speci�cations for printing from the browser.

Poly�ll — Code that implements a feature on web browsers that do not
support the feature.

Presses — Shorthand for university presses or association presses, which tend
to di�er substantially from library publishers.

Proprietary so�ware — So�ware with closed code that tends to be typi�ed by
rigid, hard-coded work�ows and business models that lock publishers in for
long periods of time and allow them no meaningful access to their data.
Proprietary so�ware can be especially problematic for academic publishers
when it is owned by bad actors in the scholarly communication sphere.

Publishers — Anyone doing publishing activities or, alternatively, employed
by someone who does.

PubSweet — The open source publishing systems platform upon which
Editoria is built. PubSweet is itself built by the Coko community.

114 Glossary

Roles — Describes who a person is with respect to a single book (e.g. author,
editor) and what they are and are not allowed to do in Editoria.

Scholarly communication — The system through which research articles,
monographs, and other scholarly writings are created, evaluated for quality,
disseminated to the scholarly community, and preserved for future use. The
system includes both formal means of communication, such as publication in
peer-reviewed journals, and informal channels, such as electronic listservs.

> Association of College and Research Libraries, “Principles and Strategies for the Reform of

Scholarly Communication 1 [http://www.ala.org/acrl/publications/whitepapers/principlesstrategies] ” (2003)

Wax — A web-based word processor that is con�gurable and capable of
supporting di�erent themes. Wax is a Coko tool and is the editor included with
Editoria. Thanks to Editoria's modular design, it can be replaced by another tool
if needed.

Work�ow — The chain of events undertaken to bring content from initial
creation to publication.

WYSIWIG (What You See Is What You Get) — An editing interface where
text and other elements that are created or edited appear within the editor the
same as they will in �nal format, whether print or digital.

XSweet — A customizable set of XSLT (extensible stylesheet transforms) that
transforms Microso� Word XML (.docx) content into HTML and beyond.
Editoria uses XSweet to import .docx �le content into the Wax editor.

http://www.ala.org/acrl/publications/whitepapers/principlesstrategies

Colophon

This book was collaboratively written with Editoria and facilitated by Book
Sprints [https://www.booksprints.net/] . The book was rendered to print-ready
PDF using Paged.js [https://www.pagedmedia.org/] . The body text of the book is
set in Spectral, designed by Production Type for Google and available on Google
fonts [https://fonts.google.com/specimen/Spectral] while the headings are
composed in Fira Sans and the coding is set in Fira Code, both designed by Erik
Spiekermann, and available from Mozilla [https://mozilla.github.io/Fira/] .

The Book Sprint was facilitated by Barbara Rühling.

The book was designed by Agathe Baëz [https://www.agathe-baez.fr/] .

Illustrations are made by Henrik Van Leuween [http://www.henrikvanleeuwe
n.nl/] .

The book was printed by Imagink [http://imaginkshop.com/] , in San
Francisco (California, USA), during the month of October 2018.

https://www.booksprints.net/
https://www.pagedmedia.org/
https://fonts.google.com/specimen/Spectral
https://mozilla.github.io/Fira/
https://www.agathe-baez.fr/
http://www.henrikvanleeuwen.nl/
http://imaginkshop.com/

116 Colophon

