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AN EXPLICIT FORMULA
FOR A WEIGHT

ENUMERATOR OF LINEAR-
CONGRUENCE CODES

TARO SAKURAI

A�������. An explicit formula for a weight enumerator of linear-
congruence codes is provided. This extends the work of Bibak and
Milenkovic [IEEE ISIT (2018) 431–435] addressing the binary case to the
non-binary case. Furthermore, the extension simplifies their proof and
provides a complete solution to a problem posed by them.
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INTRODUCTION

Throughout this article, n and m denote positive integers, b denotes an integer and 
 for a positive integer q. We will use n for a code length, m

for a modulus, b for a defining parameter of a code and ℤq for a code alphabet.

Definition. Let  and b ∈ ℤ. The set C of all the solutions 
 for a linear congruence equation

is said to be a linear-congruence code where . A linear-
congruence code C is called binary when q = 2.
Several deletion-correcting codes which have been studied are linear-congruence
codes; the Varshamov-Tenengol’ts codes , the Levenshtein codes , the Helberg codes ,
the Le-Nguyen codes  , the construction C′ of Hagiwara   (for some parameters), the
consecutively systematic encodable codes and the ternary integer codes in   fall into
this category (Table).

Zq ≔ {0, 1, … , q − 1} ⊂ Z

a = (a1, … , an) ∈ Z
n

x = (x1, … , xn) ∈ Z
n
q

(1) a ⋅ x ≡ b (mod m)

a ⋅ x ≔ a1x1 + ⋯ + anxn
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T����. Examples of linear-congruence codes

Linear-congruence code q mConstraints

Varshamov-Tenengol’ts code 2 n + 1

Levenshtein code 2 mm ≥ n + 1

Helberg code 2 vn + 1s ∈ ℤ > 0

Le-Nguyen code q mm ≥ wn + 1, s ∈ ℤ > 0

Construction C′ 2 n

Consecutively systematic encodable
codes 2 2s + 1

b = 0, s ∈ ℤ > 0, 0 < n − s < 

2s − 1

Ternary integer code 3 2n + 1 − 
1

The following problem concerning the size of a linear-congruence code—the number
of solutions for a linear congruence equation [eq: ax = b]—is posed by Bibak and
Milenkovic.

Problem. Give an explicit formula for the size of a linear-congruence code.
Finding an explicit formula would be a first step toward understanding the
asymptotic behavior of the size of a linear-congruence code. Bibak and Milenkovic
provide a solution to the problem for the binary case. In this article, we provide a
complete solution to the problem with a simple proof, which improves the argument
of Bibak and Milenkovic. Actually, what we will show is how the Hamming weights
of the solutions for a linear congruence equation distribute. This immediately gives
an expression of the size of a linear-congruence code involving exponential sums—
Weyl sums of degree one.

To state the main theorem we need notation which will be standard.

Definition. For a code C ⊆ ℤq
n, we define a polynomial WC(z) by

where  denotes the Hamming weight and

The polynomial WC(z) is said to be the (non-homogeneous) weight enumerator of the
code C.
Following custom due to Vinogradov in additive number theory, e(α) denotes 
for α ∈ ℝ. Now we are in position to state our main theorem.

(a1, … , an)

(1, … , n)

(1, … , n)

(v1, … , vn)

(w1, … , wn)

(c1, … , cn) b ≢ 0, n(n + 1)/2 (mod n)

(b1, … , bn)

(t1, … , tn)

WC(z) =∑
x∈C

zwt(x) =
n

∑
i=0

Ai(C)zi,

wt(x)

Ai(C) ≔ |x ∈ C : wt(x) = i| (0 ≤ i ≤ n).

e2πα√−1
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Theorem. Let  and b ∈ ℤ. Then the weight enumerator WC(z) of
the linear-congruence code

is given by

With the same notation as above, the size of the code C is given by

PROOF OF THEOREM

The only lemma we need to prove the main theorem is the following trivial one.

The proof is straightforward:

 

Remark. The original proof by Bibak and Milenkovic  for the binary case uses a
theorem of Lehmer , which states a linear congruence equation

defined by  and b ∈ ℤ has a solution x ∈ ℤm
n if and only if 

 divides b. Consequently, their result is stated depending on
whether  divides b or not. By contrast, our result does not refer to 

 because our proof does not rely on the Lehmer theorem.

a = (a1, … , an) ∈ Z
n

(2) C = x ∈ Z
n
q : a ⋅ x ≡ b (mod m)

(3)
WC(z) =

m

∑
j=1

e(− )
n

∏
i=1

(1 + ze( ) + ⋯ + ze( )) .
1

m

jb

m

jai

m

jai(q − 1)

m

|C| =
m

∑
j=1

e(− )
n

∏
i=1

(1 + e( ) + ⋯ + e( )) .
1

m

jb

m

jai

m

jai(q − 1)

m

m

∑
j=1

e( ) = {
1 if b ≡ 0 (mod m)
0 if b ≢ 0 (mod m).

1

m

jb

m

m

∑
j=1

e(− )
n

∏
i=1

(1 + ze( ) + ⋯ + ze( ))

=
m

∑
j=1

e(− )
n

∏
i=1

∑
xi∈Zq

zwt(xi)e( )

=
m

∑
j=1

e(− ) ∑
(x1,…,xn)∈Z

n
q

n

∏
i=1

zwt(xi)e( )

=
m

∑
j=1

e(− )∑
x∈Zn

q

zwt(x)e( )

= ∑
x∈Z

n
q

(
m

∑
j=1

e( )) zwt(x)

=∑
x∈C

zwt(x) (By Lemma.)

= WC(z).

1

m

jb

m

jai

m

jai(q − 1)

m

1

m

jb

m

jaixi

m

1

m

jb

m

jaixi

m

1

m

jb

m

ja ⋅ x

m

1

m

j(a ⋅ x − b)

m

a ⋅ x ≡ b (mod m)

a = (a1, … , an) ∈ Z
n

gcd(a1, … , an, m)
gcd(a1, … , an, m)

gcd(a1, … , an, m)
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