

 Contents

 	
 About this Book

 	
 Introduction to PubSweet

 	
 What is PubSweet?

 	
 Examples of platforms built with PubSweet

 	
 Before you jump: things to know up front

 	
 Platform Design

 	
 Designing workflow

 	
 PubSweet, workflow and workspaces

 	
 Workflow Sprints

 	
 eLife case study

 	
 Hindawi case study

 	
 Europe PMC case study

 	
 A general model

 	
 Technical Architecture

 	
 Architecture overview

 	
 Why did we choose our technical stack?

 	
 Getting started with PubSweet

 	
 Install PubSweet and set up an app

 	
 Configuring a PubSweet app

 	
 PubSweet Components

 	
 What are components?

 	
 How do you create a component?

 	
 How do you use components?

 	
 Authorization and Permissions

 	
 Why Authsome?

 	
 How to use Authsome

 	
 Theming

 	
 Using themes with PubSweet

 	
 Advanced theming

 	
 Deployment

 	
 Deployment essentials

 	
 CI/CD pipeline

 	
 Development Help

 	
 Where can I ask questions?

 	
 How can I debug?

 	
 Contributing to PubSweet

 	
 Testing

 	
 The Future

 	
 Where are we going now?

 	
 Glossary

 	
 Colophon

 About this Book

 This book was written to help you use PubSweet to build the publishing platform of your dreams. It was written by the Coko community with the hope that you will find it useful and join us in our efforts to liberate the scholarly publishing community from outdated workflows and expensive proprietary software.

 First a word on the Coko Community and the origins of PubSweet. Coko is short for the Collaborative Knowledge Foundation, co-founded by Kristen Ratan and Adam Hyde. Soon after the Coko start up, Jure Triglav was employed to start building the open source PubSweet toolkit for building publishing platforms. This was at first a lonely affair until eLife and Hindawi joined at the same time. Both organizations wished to join the effort to improve PubSweet so they could build their own journal publishing systems. That moment was the start of the Coko community and from there it has grown to include many other organizations including EBI, Wormbase, perhaps soon the Organization for Human Brain Mapping, and others. The Coko community, sometimes refered to as the PubSweet community in this book, is a vibrant and growing group of people enthusiastic about building better publishing workflows and a better future for scholarly publishing. The Coko community wrote this book!

 Who should read this book?

 This book is targeted at a wide range of readers within the publishing industry on both the product and technology sides: funders and strategic stakeholders making technology or budgeting decisions, project managers, designers, and software engineers.

 Those in non-technical roles will get the most from the first two sections, Introduction to PubSweet and The Future of PubSweet: these sections set out the business case for adopting PubSweet and describe how your organization can set about redesigning or optimizing its workflow. The more technically minded will benefit from the central sections on Technical Architecture, Development Help.

 Of course, for anyone with sufficient time, we recommend reading everything!

 Acknowledgements

 The book was written over three days using the Book Sprint methodology. We wish to thank Barbara Rühling, our facilitator from Book Sprints for guiding us through this process and making all this hard work feel like fun. Also thanks to Henrik, Agathe, Raewyn and the rest of the Book Sprints crew who worked behind the scenes to make our work look great!

 Participating in the Book Sprint were Yannis Barlas (Coko), Bogdan Cochior (Hindawi), Nick Duffield (eLife), Samuel Galson (eLife), Yuci Gou (EBI), Audrey Hamelers (EBI), Peter Hooper (eLife), Adam Hyde (Coko), Christos Kokosias (Coko), Tamlyn Rhodes (eLife), Paul Shannon (eLife), Julien Taquet (Coko), Alex Theg (Coko), and Jure Triglav (Coko). Thanks also to all the wonderful folks at Hindawi, eLife and EBI who generously made the time available for their teams to participate.

 The book was written about PubSweet using Editoria, a book production platform built on top of PubSweet, as envisioned by founders Erich van Rijn of University of California Press and Catherine Mitchell of California Digital Library. Editoria was also made possible by a generous grant from the Mellon Foundation. We are eating our own dog food. Because Editoria is so great, we could output the content to epub and book- formatted PDF immediately… zero to printed and electronic book in 3 days… amazing. Book Sprints + Editoria = the best!

 We also wish to thank the Shuttleworth Foundation for their generous support of Coko's co-founder Adam Hyde, and for the PubSweet Book Sprint.

 Lastly, this book is dedicated to Alexis since he couldn't be here for the Book Sprint and yet the book was written with Editoria, and he wrote Editoria. It deserves a photo…

1

Introduction to PubSweet

Dixit, et ante tulit gressum, camposque
nitentis

desuper ostentat;

So saying, he strode forth and led them
on,

Till from that vantage they had prospect
fair

Of a wide, shining land;

Aeneid
VI, 677-8

1

What is PubSweet?

PubSweet is a free, open source
framework for building state-of-the-art publishing platforms.
PubSweet enables you to easily build a publishing platform tailored
to your own needs. It is designed to be modular and flexible.
PubSweet consists of a server (“back end”) and client (“front end”)
that work together, and both can be modified and extended to add
functionality to the system.

PubSweet is
being used for book publishing, academic journal production, and
micropublication platforms by a growing number of established
academic organizations including the University of California
Press, eLife, Hindawi, California Digital Library and others.

Each of
these organizations is building their custom platform using
PubSweet, and contributing reusable open source components back to
the community. By drawing on this growing library of components,
PubSweet can be used to rapidly create bespoke publishing systems.
If the existing components do not completely meet your needs, you
can focus development on building new components to provide just
the new functionality required.

If someone
has built an entire publishing platform which you like (for
example, Editoria or xPub), you can use it as-is, or replicate then
extend it, using your own ideas and components with minimal
effort.

Why does
PubSweet exist?

Today most
of the publishing systems are “big box” platforms built years ago
when the world of publishing was different. They have not evolved
at the same rate as users' needs and are largely just data stores
that track rather than enable or manage workflow. Most of these
systems are also expensive, monolithic, and proprietary, so it is
very difficult to change them to meet your organization's needs.
Inevitably the reverse happens and you must change your
organization to meet the prescriptive worldview of the software.
The PubSweet community believes that software should be working for
us, not the other way around.

When using
off-the-shelf software, changing a publisher's workflow means
changing their organization or switching platform vendors. Both
options are slow and expensive, making them undesirable. In the
past, this has meant that the publishing sector has not been able
to fully embrace the latest technological developments (for
example, the web) or experiment and innovate in their workflows.
When you cannot own or control your own tools, you have little say
in what those tools allow you to do; consequently, you become
subject to them, losing control of your publication process.

This
lock-in can be avoided by giving the ownership of the tools back to
publishers. PubSweet is built to do just that - it is an open
source framework for building publishing workflows. This means you
can build the workflows you want without compromising and continually
update and optimize them in the future.

What are the
benefits of PubSweet?

PubSweet is
free Open Source software, so you don't have to pay to use it. You
can modify it as much as you like, and use it for any purpose,
including commercially and for-profit. The license (a popular and
permissive open source licence called the MIT license) grants a
perpetual right to use PubSweet in this way forever.

Thanks to
the focus on modularity, you can extend PubSweet with components.
You can add new components, extend existing components, or
recompose a set of components on both the front end and back end as
much as you like. You can leverage the existing components
contributed to the community to lessen your development time and
speed up your delivery.

Assemble your own PubSweet platform

PubSweet is
web native so you can bring your workflow to the web. Bring your
whole workflow, not just your published articles, into the web, the
most powerful collaborative workflow instrument of our time.

Lastly, one
of the most powerful reasons to use PubSweet is the Coko community.
The ever-growing community of organizations building with and using
PubSweet leads to a richer ecosystem with more components to draw
from, and more resources to help you build your platform. By
working together with the community, you can share the effort to
produce new and exciting features, or reuse what someone else has
built. Software that is already in use is likely to be more robust,
free from defects, and well-adapted to real users. By participating
in the community and sharing what you know, you will benefit from
many others doing the same.

2

Examples of platforms built with PubSweet

PubSweet is
already in use in a number of different publishing contexts. The
following examples illustrate some ways PubSweet can be used.

Books

Almost all
scholarly monographs are written by authors in MS Word, then
submitted as .docx files to publishers. The content work — editing,
copyediting, and reviewing — usually happens on the Word files as
well. Many presses style the .docx files using Word macros and
add-on tools to semantically tag all the content. Passing static
files back and forth between authors and editors can be cumbersome
and slow, at best, and cause versioning problems, at worst: who has
the latest files? who made these changes? Once the content is
complete, books go through production to be paginated and converted
to other formats, an expensive, slow, and sometimes error-prone
endeavor.

No longer!
Working with the University of California Press, the Collaborative
Knowledge Foundation has created and continues to develop
Editoria, an
in-browser scholarly book production platform. Editors and authors
upload author files into a book structure, then collaborate to
style, copyedit, and review the content online, enabling fully
automated export to a print-ready, paginated PDF, epub, and
more.

Editoria Workspaces

There is
strong interest in adoption from other university presses, and as
of mid-2018, the University of North Carolina Press is planning to
use Editoria to publish up to 150 Open Access, digital-first books
in the next three years.

Journals

As a
response to inflexible and expensive content and journal management
systems, several PubSweet journal systems for submission, peer
review, and publication are being developed by organizations
including eLife, Hindawi, and Collabra: Psychology from the
University of California Press. Collectively we call these PubSweet
journal platforms 'xPub' (and refer to them each as xpub-Collabra,
xpub-eLife etc).

Hindawi Workspaces

Academic
journals share many similarities, but also tend to have slightly
different workflow variations from one to the next. For example,
almost all journals need an interface to search, invite and manage
reviewers, and many do so in much the same way. However, the
minutiae of editorial workflows also tends to vary greatly: does it
go to a senior editor for further editor assignment, or straight to
a handling editor? is the editor assigned or invited? does the
author or the editor assign the submission type? are there
different editor assignment chains for different submission types,
and if not, should there be,
were it possible?

This is
perfect for PubSweet's use-what-you-want and
build-only-what-you-need approach. Two separate journals might
share the same reviewer assignment component, but both have
separate reviewer forms and editor assignment workflows.

Its also
important to note that PubSweet can be extended on the back end to
accomodate journal requirements. For example, Semantic Extraction
techniques are accommodated by PubSweet. Extraction is done within
PubSweet using server-side components that are integrated into the
workflow. There are many tools for extraction; currently the
community is working together using ScienceBeam Judge as a test framework to help
improve the tools. The Coko project INK
can also be used to manage these kinds of processes and integrates
with PubSweet very nicely.

Micropublications

PubSweet
can also be used to support micropublications - such things as data
depositions or case studies that fall short of what would be
considered a traditional journal research article. Legacy
publishing systems are built with generic use cases in mind (e.g.
typical journals). Consequently, other use cases such as
micropublications are often left behind. It is almost impossible to
find existing softwares that match their workflows or can be easily
extended.

An example:
the Collaborative Knowledge Foundation is working with WormBase, a
nematode model organism gene database, to create an elegant
submission, curation, and publication platform.

Micropublications Workspaces

Authors
often misclassify their submission type. With the opportunity to
build a new system, the Wormbase staff decided that in the best
workflow, curators - not authors - would set the submission type.
The author submits some initial information, common to all
submissions, a curator selects the submission type, then the author
submits a follow-up form with the submission type-specific data.
These kinds of tweaks can make an incredible difference to a
workflow but are simply not possible without the ability to
customize a platform.

Europe PMC
plus

Europe PMC
is a worldwide, free, life sciences literature repository for
journal articles, preprints, books, patents and clinical
guidelines. Researchers funded by the Europe PMC funders are
required to submit their publications to Europe PMC plus (a
manuscript submission system used by researchers, administrators
submitting their behalf, and publishers who bulk-submit manuscripts
via FTP) to comply with the funders' open access policies.

Europe PMC Plus Workspaces

As a
repository, Europe PMC plus only accepts articles that have already
been peer reviewed and accepted for publication, and requires a
full publication citation before the submission is considered
complete. The Europe PMC plus workflow and data requirements are
therefore different from those of journal publishers using
PubSweet. EMBL-EBI staff are using PubSweet components to develop
and customize the Europe PMC plus workflow and functionalities to
meet the requirements of all parties, including researchers,
submitters, publishers, Europe PMC administrators, third party
contractors (XML taggers) and funders.

3

Before you jump: things to know up front

Before you
or your organization makes the decision to start using PubSweet,
there are a few things it's important to know.

First,
reach out to the Coko team and the community as soon as you are
interested, and don't be afraid of asking basic or 'obvious'
questions. The community is very welcoming, quite transparent and
upfront, and happy to field questions of any kind.

If you
decide to build a platform with PubSweet, it's critical to
carefully understand or design your ideal workflow before you start
building. This can be daunting, but doing it right pays enormous
dividends in time, work, and effort down the line. We recommend
talking to the Coko team and the PubSweet community about workflow
and how to understand, optimize, and redesign it. There are many
experienced people in the community with a wealth of lessons
learned and they can save you a lot of time and heartache. You may
also wish to read the section on Designing Workflow in this
book.

If you are
in the market for developers, choose intermediate or senior
JavaScript developers, preferably with React experience. PubSweet
is built with JavaScript and Node.js / React. There are plenty of
JavaScript developers around, making finding programmers or
contracting out work as easy as possible — but be sure to hire good
ones!

Once you
have built the platform, you have three options for its
hosting:

	Host it yourself — this could be done using a provider who
offers Hardware-as-a-Service (HaaS), but this option also means you
may have the overhead of managing the network and other
infrastructure.

	Pay a hosting-only provider — if you are happy with a default
deployment you can opt to purchase a Software-as-a-Service (SaaS)
or Platform-as-a-Service (PaaS).

	Pay a hosting and publishing services provider — if you require
hosting and publishing services you can opt for a publishing
services provider who can provide all the support you need.

While some
groups may be comfortable running a PubSweet platform in-house for
a fraction of the cost of a hosting provider, others who want
professional services might prefer to contract with a hosting
and/or publishing services organization. There are groups out there
who are interested in providing these services and we anticipate
their numbers will grow over time.

Open Source
is more than just a license — open source is about participating in
a community. If you learn to work with the PubSweet community, it
will provide enormous benefits to you, but it also comes with some
expectations, norms, and rules of the road. Don't be scared of
these aspects — they are such things as agreement to act in good
faith, pay it forward, and treat others as you want to be
treated.

If these
are ideas you can get behind, read on.

Coko Community Meet, London

A quick word
about Open Source and community

Many
incorrectly assume that open source software implies low quality,
unsustainable, lacking in thought and effort, no reliable support,
or worse. In fact, PubSweet and the platforms being built on top of
it are quite the opposite: they represent close collaboration
between publishing industry practitioners, high quality code and
UX, and are a serious effort at tackling common industry problems
by a variety of extremely experienced and talented professional
developers, designers, project managers, data scientists,
publishing staff, and others. The folks who are involved are
working together out of a recognition of shared needs and problems
in the publishing industry, and a sincere belief that cooperation
and good-faith action benefits everyone.

As
mentioned, the open source and PubSweet communities come with their
own expectations that will work to your benefit. There are many
things to consider, and if you join the PubSweet community, we'll
all make sure you have the opportunity to work alongside some
experienced hands to help you get oriented. But it is good to know
ahead of time that we hold dear the following two core
principles:

Ask for help if you need it, but also
answer someone else's question if you can.

Use as much of the free code and components
as you can, but also remember to share your platform or component
back to the community.

The
PubSweet community has grown over time, to the point where there
are plenty of ongoing projects and folks currently working with it.
By encouraging engagement and good community citizenship, the
community grows, the component library you can draw from grows, and
the number of people who can give you a nudge in the right
direction grows. Just like everything else in life, the more you
put in, the more you'll get out.

How do I get
involved?

For pretty
much any starting point — whether you want to chat about what's
possible, check whether a specific component you're looking for
exists, have a specific question about the code, or something else
— the first step is to get in touch with the PubSweet community.
The best way to do this is via the Collaborative Knowledge
Foundation's Mattermost web chat.

2

Platform Design

Daedalus ipse
dolos tecti ambagesque resolvit

The crafty Daedalus himself betrayed

The secret
of the maze

Aeneid
VI, 29

4

Designing workflow

Unless you
are starting a completely new publishing venture, your workflow has
likely been at least partially dictated over the years by
inflexible, prescriptive content management systems, and a
combination of workflow steps and ad hoc platform modifications
designed to get around your tools' limitations. The end result is
legacy workflows with many cul-de-sacs and
eddies that do not reflect anything like an ideal
workflow.

We want
workflow, not workarounds…

With PubSweet, publishers of all sizes
have the opportunity to break this unhealthy pattern, and are
empowered to re-imagine and build the workflow they really want.
However workflow design isn't a job title and it is sometimes
difficult to know where to start. This is also where the Coko
community can help.

In
"PubSweet, workflow and workspaces", we go over the core concepts
of designing a workflow for PubSweet. The following chapter,
“Workflow Sprints”, documents a method for working out your ideal
workflow and mapping it onto a PubSweet platform, designed by Coko
co-founder Adam Hyde. After that, in the “case study” chapters, we
describe the experience of eLife, Hindawi, and Europe PMC in
redesigning their workflow for PubSweet. The teams carried out a
process influenced by the Workflow Sprints, modified to suit their
organizations. Finally, in “A general model”, we collate lessons
learned from these case studies.

Cindy (University of California Press) designing
Editoria

5

PubSweet, workflow and workspaces

Before
designing your PubSweet platform, there are some core PubSweet
concepts to become familiar with.

The genesis
of PubSweet followed the observation that many “big box” platforms
had a single (and therefore prescriptive) approach to what journal
publishing workflow should look like, or at least, how workflow
should be tracked. PubSweet's proposition is that there is no one
journal workflow, nor is there one book workflow, micropublications
workflow, and so on, although they do all share some common
fundamentals. PubSweet is not prescriptive about your workflow, but
it does make some assumptions about how that workflow is realized.
Just two will do for now - the rest are better described in other
chapters.

The first
assumption is that publishing workflows should occur in the web.
Currently the web has not really affected publishing workflow, with
two exceptions:

	Using the browser as an interface to what are essentially data
stores (manuscript submission systems or, in the case of books,
title management systems).

	Using the web to deliver books and articles.

The web
offers the opportunity for publishing to leverage tools for
collaboration that could reach beyond the submission moment (into
the lab), past the point of publication (“living documents”) and
everything in between. PubSweet takes the position that the web is
the most powerful collaborative network of our time, and needs to
be brought into the heart of publishing workflows.

Secondly,
PubSweet has the concept of workspaces
(often also refered to as “components”, “front end components” or
just “spaces“). To bring publishing to the web, we need our
workflows to inhabit the browser; we need to see the browser as a
workspace, or rather a series of workspaces that instantiate our
desired workflow.

Perhaps the
easiest way to illustrate this idea of workspaces is by example. In
your online experience, you have probably come across the notion of
a dashboard. Many web platforms have them — Wordpress Dashboard for
example, or Google Dashboard — a common space where you can get an
overview of all things you need in order to get on with the
particular task at hand. Dashboards are good examples of a
particular kind of workspace. PubSweet enables your workflow by
chaining together a series of workspaces, then directing the right
people to the right workspaces at the right moments so they can do
what they have to do.

For
example, Editoria, as it is configured for the University of
California Press, has the following roles: Production Editor, Copy
Editor, Author. Works come in from the acquisitions department in
the form of a folder of MS Word documents. The Production Editor
creates a new book from the Dashboard and uploads these documents
into Editoria. The Production Editor then collaborates with the
Author and Copy Editor on each book by re-arranging the structure
in the Book Builder workspace and editing individual chapters using
the editor (you could also call it a chapter-editing-workspace, if
you wish). There is a lot of other detail, such as controlling who
should have access to what and when (more on all this later) but in
essence, everything is performed in three workspaces: the
Dashboard, The Book Builder, and the Editor. A high-level system
architecture for the Editoria platform looks like this:

Editoria Workspaces

Let's
contrast that with a completely different workflow. Collabra
Psychology is a journal that also operates out of the University of
California Press. Coko is building a new platform for Collabra on
top of PubSweet. The roles are pretty standard for a journal:
Managing Editor, Senior Editor, Handling Editor, Author, and
Reviewer. The workflow is also pretty standard: An Author creates a
new submission (from the Dashboard), creates and submits a
manuscript and associated metadata from the Submission Page, then a
series of Editors manage the workflow from the Decision Control
workspace. Reviewers are assigned from the Manage Review workspace,
and then reviewers read the article, write and submit reviews from
dedicated Review workspaces.

The total
number of workspaces for Collabra Psychology then is 6 - Dashboard,
Submission Page, Manuscript, Decision Control, Manage Review, and
the Review workspaces. The high level workspaces architecture looks
like this:

Collabra Workspaces

Now you
have an idea of how Workspaces work, the next thing you want to do,
if you are designing a PubSweet platform, is to work out your ideal
workflow, and map it onto PubSweet workspaces. This will be covered
in the following chapters.

6

Workflow Sprints

The
following methodology is a process designed by Coko co-founder Adam
Hyde, who has successfully facilitated a number of publishers
through this process, including Wormbase, Collabra Psychology, the
Organization for Human Brain Mapping, ArXiv, Erudit and others. The
aim of these sprints is to design an optimized publishing workflow
and translate that into a high level architecture for a PubSweet
platform using workspaces — in one day!

This
process can be facilitated to work with new publishing projects, or
to optimize tthe workflow of existing publishing organizations. To
conduct a Workflow Sprint you need the following:

	an afternoon's commitment from at least one person per role
within the publisher

	a room

	a whiteboard

	large pieces of paper

	pens

	an experienced facilitator

	some nice snacks and drinks (coffee)!

Be warned —
Workflow Sprints are fun and exciting, and great team building
exercises, but they are also definitely exhausting. Make sure you
have a nice space and plenty of good food and drinks to help your
team enjoy the experience.

Step one:
designing / optimizing workflow

The process of designing (in the case of
new projects) a publishing workflow or optimizing an existing
workflow is a process of open discussion. Like all good stories,
you start at the beginning and ask what happens first. You want the
people that are actually involved in that part of the story to tell
it.

Aperture Workflow Sprint

If you can,
make sure you also involve an author in the process to say what
happens from their experience. The workflow is recorded in a very
basic form in the following format:

	Role and title of step

	Action(s) for each step.

A basic step could look something like
this:

Author
starts new submission

If we were
to go further, it might look like this:

Author
starts new submission

Author
completes submission

Author
submits submission

Editor
reviews submission...

When documenting these steps, write them
down on a surface that all involved can easily see (such as a
whiteboard). Some of these records will be revisited as you go, so
leave room for alterations and additions.

Note that you are not documenting the
current software, you are
documenting the workflow as it is
now and discussing as you go and looking for ways to improve it.
Modify the steps so they reflect the improvements that come from
the discusssions (we want to design an improved workflow, not
document the existing workflow). Discussion and new ideas are very
important as you want the participants to start leaving behind
their legacy understanding of workflow based on their current
software, to enable a new way of thinking about what they do. Later
you will design a system to meet this optimal workflow design.

As you go through this process,
discussion is facilitated. Anyone with a query needs to be able to
ask a question about the step being discussed. You also want people
to suggest better ways of doing things as you go, and to tease out
as much nuance as possible about how things are currently done.
This will require the facilitator to ask many clarifying questions
about the current step, and it is important to drill down and get
absolute clarity. It often means asking apparently stupid
questions, but only by doing this will you uncover what is actually
happening. This is absolutely critical to understand before you can
attempt to improve upon the current way of doing things.

For example, it is not uncommon that one
or more parts of the workflow involve someone moving to a specific
computer with the tools for a certain task, which may actually be
in another room or building. It is important that this detail is
teased out so everyone can understand how absurd some of the things
their colleagues have to do really are. If they understand, they
will be motivated to help optimize the workflow to flush out these
absurdities and improve their colleagues' workflow.

A word about facilitation of this
process: you can facilitate this process for your own organization,
but it's best to avoid this if possible. Experience has shown that
existing hierarchies and inter-personal dynamics within an
organization will hamper an internal facilitator's ability to
challenge what is said and to provoke discussion on new ways of
doing things. It is far better that a facilitator isn't subject to
these dynamics, so if possible bring in an external
facilitator.

The trick here is to get clarity but not
get stuck in a quagmire of nuance. You will need to move the
conversation along and to dig out the detail relatively quickly. In
addition, be very careful to avoid magical thinking with regard to
the role technology can play in this process. Often someone will
say something like “Imagine if we could automatically....” That is
one of a number of indicators that there's an investment in magical
thinking. Be very realistic with what technology can and can’t do.
Do not make the mistake of including a workflow step that magically
makes a lot of steps disappear through automation unless you have
that technology available and know its limits, as illustrated
through your own experiences in production.

Avoiding quagmires and magical thinking
is another reason why an experienced facilitator is recommended. It
should take no longer than an afternoon to map out the optimized
workflow. Don’t worry if this is not yet ‘as optimized’ as you
would like: there will be plenty of time in the following processes
to improve on things.

Note that you should be able to document
and optimize at the same time. However, should you feel more
comfortable with breaking this into a two-stage process, you can
first document the current workflow, then discuss and work on
optimizing it in a second session.

Whichever
way you choose, document it all as you go.

Step two:
mapping work to Workspaces

With the
above information you could now make a flow diagram representing
the workflow. However it is hard to design software based on a
typical flow diagram representation. The workflow looks horribly
convoluted, linear, inflexible; and recursive processes are awfully
hard to document and parse.

So, let’s throw away the flow diagram
approach for describing workflow, and find a better way. Let's
connect each of the above steps directly to a the concept of a
Workspace as described in the previous chapter.

Let’s look at how this applies with an
example from the world of journals. For example, imagine a Managing
Editor needs to sanity-check all new submissions. They log into the
system (or they might receive an email notification) and see a new
submission listed. Contained in the notification (email/dashboard,
etc.) is a link, and they click through to the submission page and
read through it. That submission page is a simple Workspace.

So this is pretty simple. Now step through
every step in the workflow, as described in the section above, and
map out the Workspaces. To do this, take each step already
identified and connect it to a Workspace where the action is
performed.

When listed out for any workflow,
formatted as who (role) does what (actions) where (Workspace),
the process will look something like this:

	Author creates a new submission from the Dashboard

	Author fills out submission data on the Submission
page

	Author Submits the submission from the Submission
page

	Managing Editor checks submission data on the Submission
page

	Managing Editor assigns Handling Editor from the
Dashboard

…etc.

Keep it
simple

An entire
workflow could be mapped in the same way as the above example, one
step after the other, describing a simple workspace for each step
until the whole workflow is accounted for. But, there's a danger of
creating a whole lot of unique workspaces, with each step showing a
dashboard notification “directing the user” to a unique workspace.
That’s not very helpful, as you would soon end up with hundreds of
unique, one-action workspaces.

Instead,
impose a few simple constraints on the team. The basic constraints
are as follows:

	Reuse as many workspaces as possible.

	Only add a new workspace when absolutely sure the existing
workspaces can’t be reused.

If this is
done through the entire workflow and you stay disciplined, you will
end up with a very simple diagram of workspaces. For example, in
mapping the Collabra:
Psychology journal, the following results:

Collabra Workspaces

This
‘bird's eye view’ of the workspace architecture shows just 6
workspaces that cover the entire workflow. Your goal is to design a
similarly simple view for your own workflow.

Simple
actions

It is important to keep one final
principle in mind during the system design: simple single actions
usually don't need their own dedicated workspace, and are best
added to an existing workspace. Also, don’t put the same simple
action feature in two places. One of those places is wrong — make a
decision!

As with
every part of system design, these trade offs are up to you to
decide on.

Summary

The entire
process is actually quite simple:

	Write down each step of the workflow in the format - who (Role)
does what (action), optimizing as you go.

	Start with a Dashboard (it's a handy starting point) and go
through the workflow step by step.

	With each step try to reuse an existing Workspace.

	If you can’t use an existing workspace, create a new one.

	At each step also ask yourself: is this a simple single action,
and if so can it be added to an existing Workspace or do I need
different workspace?

There is a
bit of wrangling needed, but this is a pretty effective way of
capturing seemingly complex workflows in relatively simple systems,
systems that can also be optimized over time.

7

eLife case study

eLife Sciences Publications Ltd is an Open
Access journal that publishes promising research in the life and
biomedical sciences. eLife is currently in the process of building
an application based on PubSweet for its manuscript submission
process.

At the
start of the project, eLife's initial driver was to understand the
publishing workflow from a user's perspective. To do this, eLife
ran a three-day workshop with a representative group of users with
the aim of understanding and recording the current pain points,
goals and user's needs. The output from this activity was a rich
set of highly dense information. To help feed the design process,
these were turned into user stories and categorized using a Trello
board.

The Coko
development team were invited to visit the eLife offices to review
the current Collabra Psychology version of xpub-Collabra components
against eLife's user stories. This was done to see how closely the
Collabra workflow matched eLife's, and also to understand whether
any of the work could be reused.

There was
plenty of overlap in ideas between eLife and Collabora's workflow,
but the developers saw that eLife had a lot of
organization-specific needs that would need to be catered to. Based
on this understanding, eLife's current workflow was reviewed
against the user stories by running a workflow mapping session with
the editorial team.

Once eLife
approved the resulting workflow diagram, the next step was to
understand how a user might navigate each space and to outline some
of the controls that might be needed per page. To make this easier
to understand, the workflow was broken down per role. The diagram
below shows a portion of this breakdown.

eLife Workflow by role (partial)

Wireframing

Based on
the agreed diagrams, the development team started to build some
wireframes in order to share their ideas with the Editorial team.
At this stage there was no need to be too concerned about exactly
how each control worked, but rather to determine whether the
general controls per page would allow each user to carry out the
tasks they needed to.

Wireframing
provided a quick way to get some early feedback and ensure that the
development team had covered the needs of the editorial team.

Testing

It was
useful for eLife to print out a full set of wireframes and ask the
eLife Editorial team to assume various roles that would interact
with the system. eLife had tested their initial submission
workflows, so they needed to assume the roles of Staff, Author,
Deputy Editor and Senior Editor. The eLife product team acted as
“the system” by presenting each user with a paper prototype screen
and asking them to interact with it.

This
process uncovered parts of the system that were either missing or
hard to understand and helped the developers make refinements to
the lo-fi designs. These were then shared again until it was clear
the the series of basic screens and controls had effectively
covered the editorial team's workflow.

Design
Review

For the
next stage, eLife reviewed what had been designed so far and
discussed areas of the interface that needed refinement. The
designs were laid out on the office floor and a post-it note
session was run to allow participants to express any concerns.
Finally, each design was checked to see if it had covered the list
of user stories from the Trello board.

This step
was very useful in refining the interface designs and led to
significant changes to parts of the UI. eLife moved forward with
the designs from this point by breaking the project into large
components (Workspaces) such as assignment controls or submission
wizard. This made it easier to work through parts of the interface
that needed further consideration before increasing the fidelity of
the designs to more closely match the final interface design.

8

Hindawi case study

Hindawi is
one of the world’s largest publishers of peer-reviewed, fully Open
Access journals. Built on an ethos of openness, Hindawi is
passionate about working with the global academic community to
promote open scholarly research to the world. Hindawi's experience
with PubSweet is an excellent illustration of the option to
“build-only-what-you-need” approach.

Hindawi currently operates its peer review
process with a distributed Editorial Board model. PubSweet enabled
Hindawi to experiment by adding additional oversight with a new
Editor in Chief (EiC) role by building the requisite functionality
into a new submission system. To start this process, Hindawi took
many of the workflows and diagrams that existed for the current
Hindawi system, and applied them to the a new EiC model.

As Hindawi uses its own peer review
management system, many of the flows and requirements for a new
platform were already established. They just needed to identify
areas to improve, and potential new requirements for partners.
Hindawi joined a two-day product design workshop to discuss
workflows and user journeys based on the existing use cases, and
list out all the key actions, statuses, and role requirements for
the workflows.

The main outcome of the product design
phase was a first set of wireframes from a UX/UI designer for the
articulated workflows. Based on the wireframes, multiple rounds of
feedback were gathered from the existing production team, internal
researchers, and external partners, to ensure the manuscript's
workflow was correct. That effort resulted in a definitive list of
required workspaces.

Hindawi Workflow

Next,
Hindawi reviewed how much of the workflow overlapped with
xPub-Collabra and other existing PubSweet applications, and
performed a gap analysis for PubSweet Components. This helped
identify what could be reused and what needed to be built.

It is also
worth mentioning that the logic governing the editor's process was
deliberately left somewhat open-ended (e.g. no time limits, just
reminders; no minimum number of reviewers, and so on). These
details will be added once the flow of the manuscript works as
expected. Hindawi also decided to leave complex email management
out of the initial build to avoid complexity (i.e. certain email
notifications are part of the system to begin with), but this
functionality will need to be incorporated at a later stage.
Discipline in choosing a minimum viable thin slice of functionality
to build first — taking care not to build oneself into a corner —
is an important guiding principle.

9

Europe PMC case study

Europe PMC is a
repository providing worldwide access to life sciences articles,
books, patents, preprints, and clinical guidelines. Europe PMC Funders'
Group organisations mandate that published research arising
from the grants they award must be made available through Europe
PMC. One way this can be achieved is for authors to submit, via the
submission system run by Europe PMC (Europe PMC
plus), the manuscripts of such articles once they have been peer
reviewed and accepted for publication.

Europe PMC
staff at the European Bioinformatics Institute (EMBL-EBI) are
currently in the process of redeveloping Europe PMC plus using
PubSweet. Because Europe PMC plus only accepts articles that have
already been peer reviewed and accepted for publication, and
requires a full publication citation before the submission is
considered complete, the Europe PMC plus workflow and data
requirements are somewhat different from those of the journal
publishers using PubSweet. The editorial staff and requirements are
also much more circumscribed.

At the
start of the redevelopment project, Europe PMC team members worked
together with Adam Hyde in a Workflow Sprint (see Workflow Sprint chapter) to define an idealised
workflow and identify any overlaps with existing PubSweet
components.

Europe PMC plus submission workflow

Using this
workflow and other excercises from the Workflow Sprint, the Europe
PMC team came up with wireframes for three wizards that will
comprise the new Plus system. Next, Europe PMC reviewed how much of
the workflow and wireframes overlapped with xpub-Collabra,
xpub-Faraday, xpub-eLife, and other existing PubSweet applications,
and performed a gap analysis for the components that would still
need to be developed.

Europe PMC
follows a design and development process focused on User Experience
(UX). The Europe PMC UX team improved the existing wireframes and
developed user stories to expand upon the idealised workflow and
provide detailed requirements for the components of each wizard.
From this point, Europe PMC has quickly bootstrapped the Plus
project based on xpub-Collabra. A UX designer is closely involved
in the development of user interfaces from new and existing
PubSweet components. Additionally, components and functionality are
throroughly tested by the Europe PMC QA engineer, and user tested
by the staff who administrate the Plus system. User testing with
Europe PMC plus submitters will also be completed regularly
throughout the development of the project.

Europe PMC
plus will be hosted on EMBL-EBI's own computing infrastructure,
such as its OpenShift container platform and its private Minio
cloud storage.

10

A general model

As a result
of collaboratively writing the use cases and the example of the
Workflow Sprint method during this Book Sprint, we were able to
come up with a useful abstraction of the different paths to
designing a PubSweet platform.

In essence,
Coko, eLife, Hindawi, and Europe PMC each started with an
understanding of the publishing workflow. This is, in short, a high
level description of who does what as described by roles (Editor in
Chief, Handling Editor, Reviewer, Author etc). While these might be
documented in different ways, such as in a list for Workflow
Sprints, or in Trello for eLife, the effect is the same.

At this
moment, the processes diverged. Workflow Sprints went rapidly
towards designing the high level workspace diagram and then
iterated on the UX/UI for each space later (during the build
process), whereas Hindawi and eLife moved to UX/UI first, designing
the micro-iteractions upfront, and that was the driver for
understanding the workspaces needed.

Both
pathways started from the same point — workflow — and ended in the
same point — workflow mapped onto PubSweet workspaces. Both
processes spend time understanding and optimising a publisher's
workflow. Both also include UX/UI design and a way to describe
their system in terms of workspaces. However the journey in between
is quite different as you can see in the below diagram.

Different pathways from Workflow to
Workspaces

The pathway
for all starts at workflow. Workflow Sprints turns right and moves
first to designing the block-level PubSweet workspace diagram
before moving on to UI/UX. Hindawi and eLife both turn left to
address UI/UX first, using that as a method for understanding the
workspaces needed.

It should
also be noted that in all cases the above diagram is convectional,
in the sense that there are major flows but smaller iterative
processes continuously move through each part of the above stages
throughout the entire development cycle.

As the
community grows and we can share more experiences like this, we
will come to understand the strengths and weaknesses of each and
learn which of these processes is good for which kind of situation.
However it is interesting to note that all of the foundational Coko
community partners place publishing workflow at the top of the
mountain, and everything is driven by it - quite possibly a very
different approach to the way publishing tool providers have done
things to date.

3

Technical Architecture

…totamque infusa per artus

mens agitat molem et magno se corpore
miscet.

Mind, immingled with the vast and general
frame,

Fills every part and stirs the mighty
whole.

Aeneid
VI, 726-7

11

Architecture overview

If you are
a developer who has jumped straight to the technical portion of
this book, go back to the beginning now! PubSweet technical
decisions are at their core motivated by the issues with workflow
described in the previous sections. Understanding those issues will
allow you to better understand why our software is structured the
way it is. Equally, if you are a non-technical person, do at least
skim the following sections! They will give you a better insight
into the nature of our technology and our community of
developers.

In this
chapter we provide a brief overview of the main parts of a PubSweet
application. For more detail you will need to consult the chapters
that follow.

PubSweet is
composed on a technical level out of the following:

	pubsweet-server: an
extensible Node.js server.

	pubsweet-client: a
set of core React components and Redux actions.

	A data model: shared between client and server.

	PubSweet components: extend the server and/or client's
functionality.

	authsome:
encapsulates authorization logic.

	pubsweet-cli : runs
scripts to start an application and to manage the database.

Below is a
diagram representing the high level architecture of a PubSweet
application.

High level architecture of a PubSweet
application

Server

The
pubsweet-server
package is the backbone of PubSweet applications. It is built on
top of the Express web framework. It
comes as a dependency to your project, removing the need to develop
your server from scratch, while also allowing for extensibility, in
order to cover different organizations' custom needs. It is
responsible for:

	Connecting to the database layer.

	Defining the core data model.

	REST API (deprecated)

	GraphQL API (via Apollo Server)

The server
can also extend its capabilities through server components. Common
use cases for this would be providing a new API endpoint or GraphQL
query and integrating to an external service, but not limited to
these. Server components also have access to the application's
context through the server. pubsweet-server
needs a connection to PostgreSQL
database in order to provide the full-featured functionality that a
server is expected to have.

Client

The
pubsweet-client
package provides the core setup that your front end needs. This
includes connecting to the server for data fetching and writing, as
well as a set of low-level React components. The most important of
these components is Root which sets up
the React app that runs in the user's browser. It ensures that
other PubSweet components have access to a consistent set of
services including routing, theming, network access and state
management.

pubsweet-client
currently provides two options for handling network access and
state management. Redux and an API helper are used for accessing
the REST API, and Apollo Client is used for accessing the GraphQL
API.

Redux

Redux is a
predictable state container for JavaScript apps.

Redux uses
actions to signal state-changing events, and reducers to handle
updating the state based on the outcome of actions. pubsweet-client
includes some actions and reducers for sending information to the
pubsweet-server REST
API and applying the results to the Redux state. Any component can
also manage its own state using internal variables and choose not
to interact with the Redux store at all. There's a balance in terms
of what state should be global and what state can be local, based
on that state affecting multiple components.

It is worth
noting that Redux and the REST API are deprecated in PubSweet, in
favour of using Apollo and GraphQL, covered in the following
section.

Apollo

Apollo Client is designed to help you quickly build
a UI that fetches data with GraphQL, and can be used with any
JavaScript front-end.

Apollo
Client is provided along with pubsweet-client in order to connect
with pubsweet-server's
GraphQL endpoint. It also uses a smart caching mechanism that
updates its internal state when a mutation is run, along with
useful helpers for handling queries, mutations and
subscriptions.

Data
model

Conceived
after analyzing several use cases in the publishing world (blog,
journal and book publishing platforms) and striving to represent
the needed concepts as concisely as possible, the data model
represented in PubSweet core (pubsweet-server and
pubsweet-client)
consists of the following entities:

	Collection: A
container, e.g. representing a journal, a volume or issue, a book.
A Collection is mainly a container for several Fragments, but it
can also store some associated metadata.

	Fragment: A
Fragment can represent such entities as a blogpost, a manuscript,
an article, a chapter. Fragments could also potentially be used as
a container, as it can contain other Fragments.

	User: An entity
representing registered users of an application.

	Team: Teams
represent groups of people, e.g. in the context of a journal
publishing platform, a team can represent the editors of a journal
or the reviewers of a manuscript. Teams can be associated with
objects (e.g. a team of contributors on a blog post) or they can be
global, i.e. have no associated objects (e.g. a group of senior
editors). Teams are mainly used for establishing a user's
permissions for an associated resource.

More
recently these four core entities, while mapping well onto real
world scenarios, have been found to be too limiting to represent
the diverse information present in the publishing landscape. As
such, a mechanism allowing the introduction of new models as components is
planned. This will extend to data modelling the benefits of
collaboration already present in components.

Components

A PubSweet
component is a collection of modules that can extend or change the
functionality of the server and/or client of a PubSweet app. By
combining components, you can build any publishing platform or
workflow. See the Components part of this book for much more on
this topic.

Authentication and authorization

It is
perhaps important to differentiate authentication from
authorization, as these two concepts often get confused.
Authentication is about establishing the identity of users, while
authorization is controling user access to resources.

Authentication can be provided in various ways:

	Username and password

	Authentication token

	External OAuth service, e.g. ORCID

Access
control in PubSweet is applied through Authsome (see the
“Authorization and Permissions” chapter).

Authsome is
a flexible team-based authorization module, which means that
authorization is determined based on team membership. A team
consists of a group of members and belongs to one of the team types
configured at load time. A team can also be conditionally active,
i.e. only active if the current state of the object matches the
requirement for team activation. Setting up and usage is covered in
the Authsome chapter.

12

Why did we choose our technical stack?

The guiding
principle has been to choose tools that are open source, mature and
popular. In the open source world, the popularity of a project is
important as it leads to a virtuous development cycle. More users
mean more contributions, improved code quality, better tooling and
increased scrutiny to security concerns all of which result in more
users.

JavaScript

JavaScript
is, along with HTML and CSS, one of the core languages of the web.
After a period of stagnation in the 2000s, JavaScript is now
enjoying a renaissance with important new features being
standardised each year. The introduction of Node.js on the server
and the rise of single page web applications means JavaScript is
more important than ever, with some language popularity rankings
putting it in the number one spot. This popularity comes with a
host of benefits:

	many ready-made software packages to choose from

	easier to find software engineers

	more learning resources

This makes
it a natural choice for PubSweet as publishers often have
undernourished technology resources. Consequently, PubSweet is
trying to lower the bar as far as possible to help you build or
extend a publishing platform. Indeed, we hope that this book
enables you to work with local development houses to build or
extend the publishing platform of your dreams.

Node.js

Node.js is
by far the most common way of running JavaScript in a server
environment. It has a large and very active community. The npm
package manager is the biggest software repository on the planet,
with more than double the number of packages as the next
biggest.

React

React is a
popular front end framework that takes the pain out of rendering
complex, interactive user interfaces. It too has a large and very
active community. However the feature that made it stand out is its
component model which makes it an especially good fit for
PubSweet.

React
should not be confused with Web Components which is a technology
standard currently being added to the DOM and HTML specifications
by the W3C. Whilst this might seem to be a more attractive or
interesting choice, browser support is still very poor, and the
community is small.

PostgreSQL

PostgreSQL,
while not always being the most popular open source database, is
arguably the most mature, stable and feature rich. Some of these
features allow it to be used both as a relational database and a
document store. This makes it particularly suitable for a
component-based system where parts of the schema may need to be
loosely defined but still queryable.

GraphQL

GraphQL is
an outlier in the list of PubSweet technologies as it is far less
popular than the competing API standard, REST. However, the
advantages it offers have been deemed compelling enough to warrant
backing the less mature choice.

Some of
these advantages are:

	Declarative data binding – front end components can specify the
data they need and hand off the responsibility for fetching that
data to the system.

	Self documenting – the API can be introspected to find the
available queries and responses.

	Extensibility built in – allows data types to be extended by
components.

	Clearer specification – REST is a very light specification
which leads implementations to differ substantially in the
details.

Some of the
disadvantages are:

	Whereas denial of service attacks against REST APIs can be
mitigated by rate limiting at the network level, GraphQL APIs
require a different approach. This is because queries can be
arbitrarily complex and a single malicous request could result in
hundreds of database queries.

	Caching also requires a very different approach since there is
no mapping from URLs to queries as in REST.

The GraphQL
ecosystem is still young, but is growing at a pace and GraphQL is
already used by many big players, including Facebook (where it
originated).

Styled
Components

Styled
Components is a CSS-in-JS solution for styling React components.
This is a very crowded space with many competing solutions and new
ones being created all the time. With a large community, good
documentation and first class theming support, Styled Components
arose as a contender early on. The final decision to adopt it as a
PubSweet technology was made by the community after comparisons
with other solutions.

How were
these technologies chosen?

Most
decisions in PubSweet are done through a request for comments (RFC)
process where:

	anyone can suggest a change

	it gets discussed by interested parties

	a choice is made based on the presented arguments

An example of an RFC process is the
styled-components
discussion.

It's worth
noting that major changes do happen. Two recent major changes
include replacing PouchDb with PostgreSQL, and deprecating the REST
API in favor of GraphQL. These decisions were made by the community
through the RFC process, and we welcome your future
participation.

4

Getting started with PubSweet

Facilis descensus Averno...

sed revocare gradum superasque evadere ad
auras,

hoc opus, hic labor est.

To Avernus the downward path is easy…

But O! remounting to the world of
light,

This is a task indeed

Aeneid
VI, 126-9

13

Install PubSweet and set up an app

You'll need a couple of things
installed on your machine before you get started: Node.js (version
8.9) or higher and yarn (version 1.3.2
or higher).

To start
working on a PubSweet application, you could grab one that already
exists from our GitLab, like Editoria or xPub. You could also start
with pubsweet-starter
that has been created with the sole purpose of getting devs up and
running with minimal friction. Or, there's a tutorial on how to get
up and running on the pubsweet.org website.

The rest of
this chapter assumes that you chose neither of those paths and
decided to create your application from scratch.

Before
anything, you will need to start with an empty Node.js project to
which you'll add the needed depencies by typing the following:

yarn add pubsweet \
pubsweet-server \
pubsweet-client \
pubsweet-component-login \
pubsweet-component-signup

Note:
We use yarn in our
examples, as we heavily use yarn workspaces in
our code. Feel free to use npm, however, if you
think that covers your use cases better.
Main
concepts for your first app

pubsweet-client uses
React. As such, it relies on an app.js file to serve
as the root component, and
a routes.js file to
specify your app's endpoints. It also leverages popular libraries
such as webpack and
react-router to
provide functionality for bundling and routing. Here's a simple
example of how to get started.

You will
need three main files: app.js,
index.html, and
routes.js. By
convention, we add these files in an app folder in the
root of the application.

index.html

Your
index.html file is
the web page into which your PubSweet app loads. All it contains is
a <div
id="root"> – which will be replaced with your React app's
elements — and a script to load your bundled app.

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
</head>

<body>
 <div id="root"></div>
 <script type="text/javascript" charset="utf-8" src="/assets/app.js"></script>
</body>

</html>

Your
index.html file
should look pretty much like this example, although your script
source might change if you choose to reconfigure your webpack
settings.

app.js

This is
your React app's entry point. It grabs the <div
id="root"> from the index.html file and
replaces it with the PubSweet app. This is also where you import a
theme for your PubSweet app to use, if you choose to use one (for
more information see the Theming section).

import 'regenerator-runtime/runtime'

import React from 'react'
import ReactDOM from 'react-dom'
import { hot } from 'react-hot-loader'

import createHistory from 'history/createBrowserHistory'

import { configureStore, Root } from 'pubsweet-client'
import theme from '@pubsweet/coko-theme'

import routes from './routes'

const history = createHistory()
const store = configureStore(history, {})

const rootEl = document.getElementById('root')

ReactDOM.render(
 <Root history={history} routes={routes} store={store} theme={theme} />,
 rootEl,
)

export default hot(module)(Root)

routes.js

Finally,
you'll need a routes.js file for
your app.js file to
reference. This file indicates what components should be served up
from different routes in the app's URL.

import React from 'react'
import { Redirect, Route, Switch } from 'react-router-dom'

import { AuthenticatedComponent as Private } from 'pubsweet-client'

import Login from 'pubsweet-component-login/LoginContainer'
import Signup from 'pubsweet-component-signup/SignupContainer'
import PasswordReset from 'pubsweet-component-password-reset-frontend/PasswordReset'

import Dashboard from './components/Dashboard'

const routes = (
 <Switch>
 <Route component={Login} exact path="/login" />
 <Route component={Signup} exact path="/signup" />
 <Route component={PasswordReset} exact path="/password-reset" />

 <Private>
 <Route component={NavigationBar} path="/" />
 <Switch>
 <Route component={Dashboard} exact path="/dashboard" />
 <Redirect to="/dashboard" /> // redirect other routes
 </Switch>
 </Private>
 </Switch>
)

export default routes

You'll want
to configure this file to reflect your desired paths, components,
and public/private pages.

Webpack

As
mentioned earlier in this chapter, pubsweet-client uses
webpack to provide app bundles. Create a folder called
webpack in the root
of your application and add the file webpack.development.config.js
to it. Refer to webpack's documentation for what goes in the config
or feel free to copy one of the existing webpack configuration files. It is
possible to add a configuration file for each environment you'll be
working in (for instance, you can add a webpack.production.config.js
to define Webpack rules for the production environment) .

One thing
to note is that PubSweet components are written in ES6 (including
proposals down to Stage 2) and do not come precompiled to ES5. This
means that you have to explicitly tell webpack to compile them, by
including something similar to the following in your module rules
config.

 {
 test: /\.js$|\.jsx$/,
 loader: 'string-replace-loader',
 query: {
 search: 'PUBSWEET_COMPONENTS',
 replace: `[${clientComponents
 .map(component => `require('${component}')`)
 .join(', ')}]`,
 },
 include: [
 // include app folder
 path.join(__dirname, '..', 'app'),
 // include pubsweet packages which are published untranspiled
 /pubsweet-[^/\\]+\/(?!node_modules)/,
 /@pubsweet\/[^/\\]+\/(?!node_modules)/,
 // include other packages when this repo is mounted in a workspace
 /packages\/[^/\\]+\/(?!node_modules)/,
]
 }

Configuration

PubSweet
provides options to configure your application by adding
configuration files to a config folder you'll
create in the root of your application. More on the files required
and the different configuration options for PubSweet applications
can be found in the following chapter.

Running the
application

Once you
have your configuration set up, the application can be started.
This is generally done using a script from package.json, which
in turn executes pubsweet start.
Alternatively it can be run directly from a terminal with
npx pubsweet
start.

14

Configuring a PubSweet app

Configuration files for PubSweet applications exist inside the
config
folder in each application's root directory. Node-config

is used for
handling different files for different environments. A good general
file structure would be the following, sorted by reversed priority
(for example, an option in a more specific file will overwrite the
same option in the default.js):

	default.js defines
options that apply to all environments

	[ENVIRONMENT].js
defines options that apply to this environment only, but should be
commited (eg. development.js,
production.js)

	local-environment.js
defines the options that apply to the local setup of a specific
environment. These files should be gitignored. (eg.
local-development.js),
and

	custom-environment-variables.js
looks by default for environment variables.

Please
refer to node-config's
documentation for different options and extending the above.
Also, it is important to note that you could, for example, use
.yaml
files instead of JavaScript ones, or not use environment variables
at all. We don't require one way or the other – it's up to you.

Configuration options

Configuration files internally adhere to the following
structure:

module.exports = {
 <component-name>: {
 <config-option-1>: 'value-1',
 <config-option-2>: 'value-2',
 }
}

Let's take
a look at the options that you will most likely need.

Authsome

Config
options:

	mode: Declares where
your authsome mode exists.

	teams: Declares the
teams that exist in the application.

authsome: {
 // This should be either an npm package or an absolute path, not a relative path.
 mode: path.join(__dirname, 'auth.js'),
 teams: {
 copyEditors: { // team type
 name: 'Copy Editors' // name for display purposes
 },
 productionEditors: {
 name: 'Production Editors'
 },
 }
}

See
the Authsome chapter for more information.

dbManager

The options
here will introduce a user to the database when pubsweet setupdb is
run.

	admin: Whether the
user is admin user or not.

	email: The user's
email.

	password: The user's
password.

	username: The user's
username.

dbManager: {
 admin: true,
 email: 'john@example.com',
 password: 'somepassword',
 username: 'john'
}

mailer

Configure
how emails are being sent out by the system.

	from: Who the emails
should appear as being sent from.

	transport: The
mechanism used to send the email out.

The example
below uses Ethereal Mail which
can be useful during testing as the emails are not sent to users
but are held online so you can see what would have been sent out.
Replace the auth credentials with your own account, or if using a
different SMTP server, replace the host and port accordingly:

mailer: {
 from: 'nobody@example.com',
 transport: {
 host: 'smtp.ethereal.email',
 port: 587,
 auth: {
 user: 'xxx@ethereal.email',
 pass: 'xxx',
 },
 }
}

publicKeys

The whole
config should not be available to pubsweet-client as
it might include sensitive information (e.g. the secret). The
publicKeys config
option lets developers add a whitelist of keys that should be
available in the client. To use this option, you need to use or
copy our Webpack config.

publicKeys: [
 'authsome',
 'pubsweet',
 'pubsweet-client',
 'validations'
]

pubsweet

	components: List of
components in the system. It is necessary to add new PubSweet
components here if they extend the system in some way (e.g. adding
an API endpoint or a Redux action)

pubsweet: {
 components: [
 "pubsweet-component-login",
 "pubsweet-component-signup",
 "pubsweet-component-password-reset-backend",
 "pubsweet-component-password-reset-frontend"
]
}

pubsweet-client

	API_ENDPOINT:
Defines what the URL of the api is.

	login-redirect:
Where you're redirected to after login.

	redux-log: Whether
the redux logger is turned on or off (if you're using redux).

'pubsweet-client': {
 API_ENDPOINT: '/api'
}

pubsweet-server

	baseUrl: The base
URL of the actual deployment (eg. localhost:3ooo or
myapp.coko.foundation)

	db: Database
configuration options which are simply get passed to node-postgres. Check
the package's docs for valid options.

	enableExperimentalGraphql:
Toggles whether the graphql endpoint is registered on the
server.

	logger: The logging
mechanism (eg. a winston
config).

	port: The port the
server will run on.

	secret: The secret
for signing web tokens.

	uploads: A filepath
for the uploads folder.

'pubsweet-server': {
 baseUrl: 'localhost:3000',
 db: {
 database: 'mydb',
 password: 'mypass',
 port: 5432,
 user: 'myuser'
 },
 enableExperimentalGraphql: true,
 logger: new winston.Logger({
 transports: [
 new winston.transports.Console({
 colorize: true,
 }),
],
 }),
 port: 3000,
 secret: 'notsosecret',
 uploads: 'uploads',
}

Validations

Links to
your type validations when writing to the database. PubSweet uses
joi
for validations.

validations: {
 fragment: {
 fragmentType: Joi.string(),
 kind: Joi.string(),
 title: Joi.string(),
 published: Joi.bool(),
 published_at: Joi.string(),
 source: Joi.any(),
 presentation: Joi.string(),
 },
 collection: {
 title: Joi.string(),
 },
}

Component
configuration options

Components
sometimes expect their own config options. Refer to each
component's documentation for details. The most important thing to
know is that the name of the component is the key.

'pubsweet-component-ink-backend': {
 inkEndpoint: 'http://ink.coko.foundation/'
 email: 'someuser@example.com',
 password: 'somepassword',
 recipes: {
 'editoria-typescript': 1
 }
}

Custom
configuration options

Beyond the
above, you could add new configuration options and use them at
will. This would be most useful when adding configuration options
for your custom components. Nothing is stopping you, however, from
adding extra options to existing keys.

'pubsweet-server': {
 'secret': 'notsosecret',
 'mycustomoption': true
},
'my-custom-component': {
 'enableFeature': false
}

5

PubSweet Components

Centum complexa nepotes,

omnes caelicolas, omnes supera alta
tenentes.

Embracing her hundred sons divine,

All numbered with the gods, all throned on
high.

Aeneid
VI, 786-7

15

What are components?

Background

Before
explaining what a component is, it is important to provide some
context on how a component fulfills part of the workflow model that
you, as a developer, are working towards.

The
Workflow is built using a number of Workspaces. Each workspace
provide a certain piece of functionality to the PubSweet
application. Each of these spaces is implemented by using a
component (eg. a login page), which itself is usually composed of a
number of smaller components (eg. a couple of input fields and a
button).

Components

A PubSweet
component is a JavaScript module that can extend or change the
functionality of a PubSweet application. Developers and designers
can use any combination of components they can imagine to build the
publishing platform they need.

PubSweet
components are broadly divided in two categories: server components
and client components, depending on whether they aim to extend
pubsweet-server or
pubsweet-client
respectively. Both types are expected to follow the naming
convention of pubsweet-component-
or @pubsweet/component-
to allow for easy discoverability.

PubSweet
components export certain keys from their main file. This export
makes them loadable by PubSweet applications and tooling.

Server
components

A server
component can export the following keys:

	server: This key
allows Express.js routes and/or middleware to extend the server.
The value for this key is a function that returns another function
that accepts an Express.js app as its first argument. This function
can do whatever it wants with the app (eg. add new routes, apply
middleware functions). Take a look at the password reset component for a starting
point.

	typedefs: GraphQL
type definitions

	resolvers: GraphQL
resolvers

module.exports = {
 server: () => app => {
 app.get('someroute', someRouteFunction)
 app.use(someMiddleware)
 },
 typeDefs: `GraphQL type definitions`,
 resolvers: { }
}

Client
components

All client
component options are exported under the client key. The
options that can be nested under this key are as follows:

	components: An array
of functions that return React components

	actions
(deprecated): A function that returns an array of Redux actions to
be introduced into the system

	reducers
(deprecated): A function that returns an array of Redux
reducers

module.exports = {
 client: {
 components: [
 () => someReactComponent,
 () => anotherReactComponent
],
 actions: () => arrayOfReduxActions,
 reducers: () => arrayOfReduxReducers
 }
}

The
login component
is a good standing example of a client component. It (predictably)
provides basic user login functionality in the client. It does this
by exporting:

	Redux actions for authenticating and de-authenticating users
with the server

	Redux reducers for managing user data and authentication
tokens

	A React login form that provides a login interface and uses the
login Redux actions and reducers

You can
install the login component and
instantly have login functionality in your app. You can also pick
and choose which parts of the component you use. For example you
could build your own React login form and still make use of the
Redux actions and reducers from the login component.

Components
Library

As
mentioned already, PubSweet components follow the naming convention
of starting with pubsweet-component-
or @pubsweet/component-
to make them easily discoverable on the npm registry. However, this
is not a requirement. In fact, components don't have to be
published at all - they can live in a directory or a git
repository.

A number of
PubSweet components are already available for developers. Some of
them exist in the PubSweet repository and are ready to use.

PubSweet
UI

Most of the
components in the Components Library use a number of smaller highly
reusable components. From small components like input fields and
buttons to a configurable form, there are a lot of small components
that can be useful to any number of larger components.

PubSweet UI (@pubsweet/ui) is an
important PubSweet package which intends to fill that gap. It makes
an ever-expanding list of these components available for
developers, and plays a central role in the development flow of a
front end component. UI elements are categorized based on a loose
adherence to the principles of atomic design.

PubSweet
also provides a complementary library (@pubsweet/ui-toolkit)
that provides some helper functions (more on that in the theming
section of this book), as well as bits of reusable CSS (eg.
rotation keyframes animations, fade ins etc.).

Conventional
Commits

All changes
to components are documented using Conventional
Commits. A good example of how this might look like in practice
is our commit log. All contributions to these
libraries are required to follow this particular commit
structure.

16

How do you create a component?

The
component library is a resource that makes PubSweet better for
everyone. The more components in the library, and the more people
helping maintain them, the better the PubSweet ecosystem becomes
for all of us.

When
thinking of adding a component, be sure you check beforehand in the
PubSweet component library for existing ones. As the library is
constantly growing, it might be that a similar component has
already been submitted.

Usually
components are developed with reusabilty in mind, but they also
follow YAGNI and KISS principles. It's up to the contributor to
decide if a component can be reused, extended, or a new one could
be created.

If you
develop components, please add them to the library. If you use
components developed by others, please consider helping maintain
them by reporting issues and contributing bug fixes.

The process
for contributing a component, or any other code, is described in
the Contributing to PubSweet chapter.
The technical requirements and suggestions for components are
outlined below:

Development

The easiest
way to start with a new component is to take an existing component
from the component library, the closest one to what you need, and
use it as a starting point.

A PubSweet
component, whether a server or client component, is an
npm
package and should respect the following file structure:

	index.js
(conventional structure to register the component);

	package.json (used
for npm, declaring component dependencies);

	README.md
(documentation for installation, usage, customization etc.);

	CHANGELOG.md
(register version, changes, breaking-changes etc.);

	Component files or folders.

Things to
keep in mind when creating a new component:

	Start with reusability in mind;

	Follow the principles of DRY, KISS, YAGNI;

	Use variables, theme variables for styling, React props etc.
and not hardcoded values;

	Follow Conventional Commits or keep a healthy changelog;

	Write documentation;

	Write tests.

Design

Layout and
what makes a UI component

Relying on
Brad Frost's principles of Atomic Design, PubSweet UI
(@pubsweet/ui) is a
single component offering an ensemble of smaller reusable elements
classified as either atoms or molecules. We use the word component
to refer both to a component released as an independent package and
to any of the elements inside PubSweet UI.

Atoms and
Molecules

The goal of
PubSweet UI naming is to bring the same vocabulary across the
applications and members of the community.

	An atom is the smallest bit of UI that you can reuse in your
application (a button, an input, etc.) You could call an atom any
element that it wouldn't make sense to divide into multiple parts:
a radio button without a label for instance.

	A molecule is a reusable component made of multiple atoms. A
login form, for instance, is made of two atoms of input (username
and password) and an atom of a button (login).

You can use
any of the atoms and molecules when creating a component. To be
able to choose the atoms and molecules you need, you can have a
look at PubSweet styleguide.

To be able
to contribute a UI element, you need to be sure that it's usable
within the starter-kit default theme without any CSS override.

Because an
atom has no way to know how it’s going to be used in different
molecules, it should be ready for all options. In particular, it
should not define any layout that will determine where it appears
on the page.

Let’s take
the example of a series of radio buttons. In a group of two (yes
and no for example), the radio buttons should be laid out inline.
But if you need to provide more than two options, the brain will
have an easier time scanning from top to bottom so the layout will
be different.

Theming-ready component

As PubSweet
provides a set of tools to easily change the look and feel of any
UI element, your atom or molecule should be developed using the set
of variables as the minimum required CSS.

For
example, the primary button atom is set to use the primary color
for its background color:

const Button = styled.button`
 background: ${props => props.theme.colorPrimary};
`

For a
complete list of variables, you can check the pubsweet/design repo
regarding variables.

Accessibility

Accessibility must be an important
consideration in the choices of design and UI/UX made for PubSweet.
As a minimum, all PubSweet components must comply with the Web
Content Accessibility Guidelines (WCAG) version 2.0 at level AA.
There is no simple checklist or automated test for this but here
are some things to keep in mind:

	Ensure that all forms and controls can be operated using the
keyboard only. This includes having a recognisable style on the
currently focused element.

	Test components and pages in a screen reader such as ChromeVox,
VoiceOver (Mac) or Narrator (Windows) and check that the order in
which things are announced makes sense.

	Use the Accessible Rich Internet Applications (ARIA)
specification to your advantage. It provides a number of attributes
that allow custom UI components to be imparted with the same
accessibility features as native components such as <button> or
<select>.

	Colors should be chosen with contrast in mind and ratio should
pass at least the AA grade for the WCAG 2.0 test.

Further
reading

	W3C Accessibility homepage

	WCAG
Quick Reference

	Authoring Tool Accessibility Guidelines (ATAG)

	The A11Y
project

	Inclusive
Components

Setting the
vertical rhythm

A vertical rhythm is a way to bring
consistency in spacing, so each UI component fits into place and
none seems awkward (unless you design it that way). Therefore each
component should use the same vertical grid for its internal
layout. Setting the line-height of your body text as a
gridUnit variable is
a good way to keep a coherent relationship between your text and
your non-textual elements.

In HTML,
the height of an element is always the result of this formula:
border-top +
padding-top +
content +
padding-bottom +
border-bottom. Be
sure that the result of the calculation is always a multiple of
your gridUnit.

17

How do you use components?

Using a
component is as simple as installing it, configuring it, and then
including the functionality it exports in your own app's code.

Installing

Components
can be installed using the PubSweet CLI:

pubsweet add login

This
installs the pubsweet-component-login
package, and adds the component to the app config so PubSweet knows
to load it.

Note that the CLI adds the pubsweet-component-
prefix automatically if it's not already present.

You can also manually install components
using npm or yarn:

npm install --save pubsweet-component-login
//or
yarn add pubsweet-component-login

yarn add pubsweet-component-login

If you do
that, you'll need to add the component manually to to
config/components.json.

Configuring

There are
two aspects to configuring components:

	The app can be configured to know which components to
load.

	The component itself can be configured.

Specify
which components to load

PubSweet
will load any components in the pubsweet.components
array of the configuration object.

You can add
components to this array manually, or if you install the component
using the CLI they will be added for you.

In a
pubsweet CLI-generated app, the list of loaded components is in its
own JSON file at ./config/components.json.

[
 "pubsweet-component-login",
 "pubsweet-component-signup",
 "pubsweet-component-wizard"
]

You need to
use the full npm package name in
the config array, i.e. pubsweet-component-login
not login.

Configuring
a component

Any
component can define its own configurable options, and can access
general configuration from the client or server.

Each
component's README.md should
specify which configuration options can be used, and what they
do.

Example
snippets from AppBar component. The app bar appears at the top of
every page of the application.

Functionality
customisation:

//It displays the name of the application (as a link to the home page), the
//username of the current user, and a link to sign out.
<AppBar brand="xpub" user={{ username: 'user', admin: true }} />

//When the user is not signed in, only the login link is displayed.
<AppBar brand="xpub" />

//Can optionally pass navigation links.
<AppBar
 brand="xpub"
 navLinkComponents={[
 <Action active to="/home">
 Home
 </Action>,
 <Action to="/about">About</Action>,
]}
 user={{
 username: 'user',
 admin: true,
 }}
/>

//Can use a custom component as right element.
//Right component props - the right component will be passed the following props:
// - user - the current logged in user; null if no user is logged in
// - onLogoutClick - the logout function
// - loginLink - link to redirect users to login
const RightComponent = ({ user, loginLink, onLogoutClick }) => (
 <div
 style={{
 display: 'flex',
 width: 200,
 justifyContent: 'space-between',
 }}
 >
 {user ? user.username : 'admin'}
 <button onClick={onLogoutClick}>logout</button>
 </div>
)

<AppBar
 brand="xpub"
 user={{ username: 'userName', admin: true }}
 rightComponent={RightComponent}
 onLogoutClick={() => console.log('Logout clicked')}
/>

Style
customization:

Edit your
theme.js file under
cssOverrides to
override desired properties:

const cokoTheme = {
//....
 cssOverrides: {
 AppBar: {
 Root: css`
 box-shadow: 0 0 1px ${th('colorPrimary')};
 margin-bottom: 1px;
 `,
 LogoLink: css`
 &:hover:before {
 visibility: hidden;
 }
 `,
 }
 }
}
export const cokoTheme

6

Authorization and Permissions

Procul, O procul este,
profani

Away, away, O souls profane!

Aeneid
VI, 258

18

Why Authsome?

The
philosophy of workflow design articulated in the “Platform Design” section places emphasis on making
the same Workspaces reusable by many different kinds of users. The
system for deciding how a workspace should appear for different
kinds of users must therefore encapsulate a significant amount of
the workflow logic, and needs to be highly flexible. PubSweet's
answer to this problem is the Authsome module.

The
publishing world has a unique combination of requirements when it
comes to authorization:

	highly complex hierarchical roles (many different roles with
very specific tasks),

	collaborative work on documents (many people working on the
same document at the same time)

	and different states of documents (e.g. a document can be in a
'submitted' state, or in a 'review' state).

This combination of requirements is
not trivial to address using typical approaches for permissions in
a web applications.

For
example, a baseline approach would be a role-based system (RBAC),
so let's try to work through an example of a journal publishing
system using roles. In RBAC, you assign roles to users of your
system, and that assignment of a role grants them permissions.
Let's try to imagine a simple journal publishing system, and the
roles that describe it:

	Author: users with the Author role can create and edit
submissions.

	Reviewer: users with the Reviewer role can create and edit
reviews.

	Editor: users with this role are all-powerful.

So far so
good. These seem very sensible roles and permissions. But let's
work through the example further. One of the requirements is that
reviewers can only create a review for specific submissions, to
which they are assigned. We can address this by enabling the
linking of roles to resources; so, for example, the reviewer role
can also be a resource-based role, linked to a specific manuscript:
User X has the Reviewer role for manuscript Y. This seems sensible
too. But let's continue working through the requirements.

Another
requirement is that manuscripts should not be edited by the author
while they are in review. This is where the combination of
requirements becomes an issue for RBAC and similar systems and they
start to break down. Specifically, permissions are often based on
the state of the resource as well as other factors. This kind of
granular control is nearly impossible with RBAC, but is achievable
with RBAC's evolution, attributes-based access control or ABAC.

In ABAC,
permissions can depend on any attribute in the system, not just
roles. This gives you a lot of flexiblity in terms of how to
structure your authorization principles.

As we have
learned with other bits and pieces of the PubSweet ecosystem, the
more flexiblity there is in a given system, the less likely it is
that reusable solutions will come out of it. Some rigidity and
structure is good for reusability, so we designed a flexible but
well defined system within an ABAC context: Authsome. On the
highest level, Authsome consists of a question-like interface: “Can
user X do action Y to object Z?”, and a completely flexible
mechanism for answering these types of questions in so-called
authsome modes.
Combining this approach with PubSweet's core Team model (teams of
different types, e.g. team of Reviewers, linking groups of people
to a specific resource), creates PubSweet's flexible but structured
answer to the incredibly varied requirements of the publishing
landscape.

19

How to use Authsome

Authsome is
a minimal module with some syntactic sugar surrounding a flexible
attribute-based access control (ABAC) core.

Each
PubSweet app has a configuration file where you can specify by
filepath an authsome “mode” (set
of authorization functions) you'd like your application to use and
what team types should exist in the system. For example:

module.exports = {
 authsome: {
 mode: path.resolve(__dirname, 'authsome.js'),
 teams: {
 seniorEditor: {
 name: 'Senior Editors',
 },
 handlingEditor: {
 name: 'Handling Editors',
 },
 managingEditor: {
 name: 'Managing Editors',
 },
 reviewer: {
 name: 'Reviewer',
 },
 },
 },
}

See
also
https://gitlab.coko.foundation/xpub/xpub/blob/master/config/default.js#L5-22:

The way
your mode handles an authorization query is completely flexible,
for example, the simplest mode could look like:

const yourMode = async function (user, operation, object, context) {
 return true
}

The above
will just return true for any kind of authorization query, so it's
not really useful outside of the imaginary educational world (take
a look at example modes below).

Authsome is
designed to enable isomorphic use on the client and server.
Changing the authsome mode therefore has the potential to change
the behaviour of the entire application, from all of the REST
endpoints, the GraphQL API, through to the client-side app.

The Authsome
API

The
Authsome external API consists of:

const authsome = new Authsome({mode: yourMode}, context)
const permission = authsome.can(user, operation, object)

The call to
authsome.can is
called an “authorization query” or “question” in discussions and
you'll see these terms pop up in various places.

A useful
but still minimal example might be something like the below, where
you instantiate a mode with more information about the environment
where authorization questions are asked (such as how to find a user
in the database):

const authsome = new Authsome({mode: yourMode}, {
 models: {
 User: {
 find: id => User.find(id)
 }
 }
})

This would
proxy models.User.find to
your User.find, which is
accessible from where you instantiate Authsome, e.g. in your server
or your client, and in practice this gives your mode access to your
models or similarly important context. An authsome mode that knows
about the User model can then do things like this:

module.exports = {
 before: async function (userId, operation, object, context) {
 const user = await context.models.User.find(userId)
 if (user.admin) {
 return true
 }
 },
 someOperation: async function (userId, operation, object, context) {
 const user = await context.models.User.find(userId)
 if(user.allowedSomeOperation) {
 return true
 }
 }

The above
gives you a good way to structure your authorization modes, where
each property of your mode corresponds to handling of authorization
queries for a certain operation. The one exception is the
before
property of a mode, which is evaluated before everything else, and
is used to give, for example, admin users the permissions to do
everything. The other property of the above example mode is
someOperation, which
corresponds to the operation parameter in an authsome.can(user,
someOperation, object) query.

The client
provides a helper component that make working with authorization on
the client-side easier — the Authorize helper:

import Authorize from 'pubsweet-client'

<Authorize object={manuscript} operation="DELETE">
 <Button onClick={this.onDestroyClick} plain>
 Delete
 </Button>
</Authorize>

Above is an
example of showing/hiding UI that relates to an authorization
request, for another example, perhaps a Create Blogpost button
.

How to write
your mode

Note that
we can replicate an RBAC system with Authsome if we wish, by
storing whether or not a user can do someOperation on the
User model. To give more flexibility, however, we recommend using
the concept of Teams. Teams are groups of users that are
either:

	Object-based: linked to particular objects (a team of reviewers
may be reviewers for only one manuscript)

	Global: not linked to particular objects (admin permissions are
the same for every kind of object)

The
permissions of teams on objects are then stored in the authsome
mode itself. That is, the authsome mode checks which whether the
teams that are linked to a particular object can validly access
that object in its current state. An example of a team is, e.g. a
team of reviewers, which is linked to a manuscript object. When the
question of authsome.can(reviewerUser,
'review', manuscript) is considered, the mode checks if the
status property of the manuscript is 'in-review', and returns true
if it is.

This system
involves storing some redundant data, since we create a new set of
teams for each new object in the system, but we find the
flexibility gained to be worthwhile.

Example: How
can I prevent the Editor in Chief from accepting their own
manuscript?

For some
reason this question gets asked often in various contexts and
variations. We don't know why exactly; maybe it's because it's
something that's hard to do in current systems. With authsome it's
straightforward.

If you have
authorization failure conditions (as opposed to authorization
granting conditions) you have to address those first. In the case
of this question, authsome.can(editor,
'accept', manuscript), you'd first check if the
authenticated user (the editor) is a member of a global team of
type 'Editor in Chief' and also one of the authors of the
manuscript – and return false/deny access if they are, but allow
every other action. A simpler example would be if one imagines a
President, who has the power to issue pardons, but should not be
able to pardon himself. In authsome, you'd simply do this in the
mode:

module.exports = {
 pardon: async function (userId, operation, object, context) {
 const user = await context.models.User.find(userId)
 if (user === object) {
 return false
 }
 return true
 }

Using
authsome you can then ask questions like:

authsome.can(president, 'pardon', president)

With this
approach even generally omnipotent users' permissions can be finely
tuned.

Example 2 :
PubSweet starter (a science blog)

In PubSweet
starter, we have two types of teams. One is a “contributor” type,
which allows you to create blogposts for the blog. The other is a
“coauthor” team type, which allows you to update a specific
blogpost (write it with someone). These are the only two team
types.

When you're
managing teams, you create a new team with a certain type, and a
certain object (in the case of Contributors, you would choose the
blog object as the object of the team). You can then add members to
this team, and those members can then ask for and receive
authorization to create blogposts for the blog.

Further
Examples

For
examples of Authsome in action look at the built in example
modes:

	Blog

	Journal

	Noon

	Specific

The modes
above are used mostly to test that authsome works, and continues to
work, for all the use cases it's built to support. There are also
real world/advanced examples out there for xpub (PubSweet-based journal publishing platform)
and Editoria (PubSweet-based book production platform). To
see how Teams are used to address authorization requirements,
consult these.

7

Theming

discolor unde auri per ramos aura
refulsit

Where through green boughs

Flames forth the glowing gold's contrasted
hue.

Aeneid
VI, 204

20

Using themes with PubSweet

Overview

It's
desirable to have a coherent, consistent user experience throughout
a platform. Buttons should all behave the same way, links should
all have the same look, tooltips should all use the same font, and
so on. Such consistency improves the user experience by providing
familiarity and reassurance. PubSweet achieves this consistency
using a theming mechanism built on top of React and Styled
Components. This mechanism provides a number of options which can
be mixed and matched.

The
simplest option is to use one of the existing PubSweet themes such
as the default Coko theme.

The second
and most commonly used option is to customise the theme variables
of an existing theme. Choose one you like the look of, then edit
the colors and fonts to more closely fit your brand.

If you wish
to change a style not accounted for by the theme variables, many
components provide extension hooks. These allow the theme to
specify arbitrary CSS to be applied to components. With this
approach, care must be taken to ensure the new style does not
adversely affect the usability and accessibility of the affected
components.

Despite
these extension points, sometimes the theme is not enough and the
component itself must be modified. In this case, instead of forking
(copying and editing) the component, we recommend that you reach
out to the community to see whether your proposed modification
could instead be integrated into PubSweet.

Hindawi and eLife collaborating on component
styling

As a last
resort, you always have the choice of creating your own custom
components. See Creating a component for more
information, and the chapter on Contributing to PubSweet to learn how and when to
feed such efforts back to the community.

Using
themes

To get
started with the default PubSweet theme, you need to pass it as a
prop to the Root React component
frompubsweet-client,
generally in your app.js file. This
will make it available to all the Styled Components in the app as
props.theme. See
Getting Started with PubSweet for an example
app.js
file.

About theme
variables

In its most
basic form a PubSweet theme is a list of variables and their
corresponding values. UI components can use these variables to
adapt their look and feel to the current theme.

For
example, take a look at the component below.

const Button = styled.button`
 background: ${props => props.theme.colorPrimary};
`

Refer
to the Styled
Components documentation if this looks new to you.
This
component expects a colorPrimary
variable to have been declared in the theme, and it will apply that
variable's value to its background. Other components can also apply
the same color for their properties, giving your application a
consistent look and feel that can be modified with minimal
effort.

Use of
variables in components is encouraged, as it enhances their
reusability. This way you can use different themes to deliver a
distinct experience when using the same components.

A more
realistic version of a button component would look more like the
code below.

const Button = styled.button`
 background: ${th('colorSecondary')};
 border: ${th('borderWidth')} ${th('borderStyle')} ${th('colorBorder')};
 border-radius: ${th('borderRadius')};
 color: ${th('colorText')};
 font-family: ${th('fontInterface')};
 font-size: ${th('fontSizeBase')};
 line-height: ${th('gridUnit')};
 min-width: calc(${th('gridUnit')} * 4);
 padding: calc(${th('gridUnit')} / 2);
`

Since accessing theme variables is such a
common case, a helper function th is provided.
th('name') is
equivalent to props =>
props.theme.name.

It's
generally advisable to give the list of variables that you use some
thought in advance, or you'll quickly find yourself in variable
mayhem. A bad example of a variable name would be varForItalicWordInTitlesWhenFirstOnPage.
This is unlikely to be reused in the application, as it’s too
specific.

Variables
are named according to a convention using camel case and two or
optionally three parts where the parts are as follows:
categoryElement or
categoryElementModifier.

Core theme
variables

Colors

	colorBackground: The
background in your pages (eg. on the body HTML tag)

	colorBackgroundHue:
Used to create a discrete contrast with the default background
color

	colorPrimary:
Indicates a primary call to action

	colorSecondary:
Default color for non-primary actions

	colorBorder: For
borders around elements

	colorFurniture:
Meant to be applied to elements that indicate content division

	colorError: Used to
indicate an error in validation

	colorSuccess: Used
to indicate a successful validation state

	colorText: Default
font color

	colorTextReverse:
Reverse font color

	colorTextPlaceholder:
Used for text field placeholders

Typography

	fontInterface: Used
for elements by default

	fontReading: Main
reading text

	fontWriting: Font
used for writing (eg. inside an editor)

	fontSizeBase:
Default font size

	fontSizeBaseSmall:
Smaller variation of the default font size

	fontSizeHeading1:
Size for Heading 1

	fontSizeHeading2:
Size for Heading 2

	fontSizeHeading3:
Size for Heading 3

	fontSizeHeading4:
Size for Heading 4

	fontSizeHeading5:
Size for Heading 5

	fontSizeHeading6:
Size for Heading 6

	fontLineHeight:
Default line height

Spacing

	gridUnit: Base
interface space measurement used by elements and typography

Border

	borderRadius: Radius
value applied to borders

	borderWidth: Width
value applied to borders

	borderStyle: Style
applied to borders (eg. solid, dashed)

Shadow

	dropShadow: Default
shadow that is applied to elements that float (eg. tooltips,
modals)

Transition

	transitionDuration:
How long transitions should last

	transitionTimingFunction:
Which function should be applied to transitions (eg. easein)

	transitionDelay: How
long transitions should be delayed before they begin

In order to
make it easy to get started, we also provide the default theme
with PubSweet. The default theme has all the variables that have
been listed above, with values that we consider a good general
starting point. This theme has intentionally steered away from bold
stylistic choices and is intended to be as vanilla as possible.

If you find
the default theme doesn't meet your needs, it can still serve as a
great starting point to create your own theme. Simply copy the list
of variables into your own theme, then change the variable values
until they suit your taste.

Existing
PubSweet components, and those contributed by the community, must
use this core set of variables. This ensures that any component can
be used out-of-the-box with any theme. You may choose to define
further variables in your theme and use these in your own
components, but be aware that this will make it harder to
contribute your components back to the community. It is
recommended, but not required, that you include your style-related
assets (e.g. fonts) in your theme, especially if you plan to
publish it as an npm package.

It may be
that the set of core theme variables grows with time as new
interface elements emerge which need to be standardised across the
UI. If you have a use case for such an addition, we encourage you
to discuss it with the community.

21

Advanced theming

Beyond
variables

We have
covered how changing a variable can affect the look and feel of
components that use that variable. But what about scenarios where
there is no variable to effect the necessary change?

Let's look at the following component:

const MyComp = styled.div`
 background-color: ${props => props.theme.colorBackground};

 &:hover {
 background-color: none;
 }

 ${props => props.theme.cssOverrides.MyComp};
`

The
background color uses a theme variable, but the hover color does
not as there is no theme variable for it. However, the code on the
last line provides an extension point for the theme to override the
style of the component.

const myTheme = {
 colorBackground: 'white';

 cssOverrides: {
 MyComp: css`
 &:hover {
 background-color: 'magenta';
 }
 `
 }
}

Now the
component will turn its background color to magenta when hovered
over. This allows us to apply arbitrary CSS to components by
modifying only the theme. This way we can also keep our components
clean, letting them provide some sane defaults, but making sure
that different style needs are not a blocker for reuse. Note that
it's important that the overrides are injected last in the
component CSS to ensure that all styles can be overridden.

Helper
functions

There are a
small number of functions to help with theming (and UI component
development in general). These are available in the @pubsweet/ui-toolkit
package.

th

The
th
function simplifies accessing theme values from a styled component.
Instead of

const MyComp = styled.div`
 background-color: ${props => props.theme.colorPrimary};
`

you can write

const MyComp = styled.div`
 background-color: ${th('colorPrimary')}
`

override

In a
similar fashion to the th function,
override is meant to
simplify the writing of the override lines that come at the end of
components' style sections and provide a hook to connect to the
theme's overrides section.

This is
what an override would look like in a component without the helper
function.

const MyComp = styled.div`
 background-color: ${th('colorPrimary')};

 ${props => props.theme.cssOverrides.MyComp};
 ${props => props.theme.cssOverrides.MyComp.Root};
`

There are
two lines here to enable writing an override in the theme, either
(a) directly with the css function that
styled-components provides, or (b) as a key in a larger object. In
the case of (a) the theme would be defined as follows:

const MyTheme = {
 colorBackground: 'white',
 colorPrimary: 'blue',

 cssOverrides: {
 MyComp: css`
 background: 'green'
 `
 }
}

In the case
of (b), when part of a larger object, the theme is defined:

const MyTheme = {
 colorBackground: 'white',
 colorPrimary: 'blue',

 cssOverrides: {
 MyComp: {
 Root: css`
 background: 'green'
 `
 }
 }
}

Using the
override function
our component code could be rewritten as follows:

const MyComp = styled.div`
 background-color: ${th('colorPrimary')};

 ${override('MyComp')};
`

Or to get
more specific in the object hierarchy:

const MyComp = styled.div`
 background-color: ${th('colorPrimary')};

 ${override('MyComp.Label')};
`

Note that
the override function makes the assumption that your theme's
overrides exist under the cssOverrides key in
your theme object.

darken /
lighten

You can use
our darken and
lighten functions to
adjust colors' lightness.

const MyComp = styled.div`
 background-color: ${darken('colorPrimary', 0.5)};
`

This is particularly useful for
avoiding the need to introduce new variables to account for a
darker version of a color. For example, if two variations are
needed for green in dealing with successful validations, the
variables colorSuccess and
colorSuccessDark
might be used. Then, if a change to colorSuccess is
needed, a change to colorSuccessDark
will also be needed. By using the darken and
lighten functions, a
single variable and any associated variations are automatically
updated.

These
functions are flexible in their input, allowing for hex values, rgb
values or percentage points instead of decimal points to be given
as arguments. All of the statements below are valid.

const MyComp = styled.div`
 background-color: ${darken('#AAAAAA', 0.3)};
 background-color: ${lighten('#AAA', 0.7)};
 background-color: ${darken('rgb(255, 255, 255)', 0.2)};
 background-color: ${darken('colorPrimary', 0.3)};
 background-color: ${lighten('someProperty.customColor', 0.5)};
 background-color: ${darken('colorPrimary', 50)};
`

headingScale

The
headingScale
function provides an easy way to conform to a heading scale derived
from a base value without the need to look up the scale's values
online. The function will receive a base font size, a scale and a
heading level (1 to 6) and return the appropriate font size by
multiplying the scale by the previous heading's font size.

const MyTheme = {
 fontSizeHeading4: `${headingScale(12, 1.2, 4)}px` // evaluates to 17.28
}

Note that
the scale function returns values as integers so units must be
appended (eg. px).

8

Deployment

Foliis tantum ne carmina
manda

O, not on leaves, light leaves, inscribe
thy songs!

Aeneid
VI, 74-5

22

Deployment essentials

Once you
have built your app, you will be ready to deploy it. PubSweet has
been written according to the principles of the 12 factor app, so it makes minimal
assumptions about how it will be deployed. For example:

	Configuration is stored in the environment. In other words, it
is separate from the application itself and can be injected at
deployment time.

	Backing services are detachable: they are also features of the
environment, not of the application. For example, in AWS you could
use S3, or in a different cloud provider use a different storage
service.

	Logs can be configured with any transport, which means there
are no assumptions about how you do you logging and you can choose
the method you prefer. You can even configure the PubSweet logger
to use a different logger entirely.

You are
therefore free to deploy the application in the way that suits
you.

Configuring
a deployment

We use the
node-config npm
module to manage configuration (see the 'Configuring a PubSweet
App' chapter). Configuration files will be selectively loaded based
on the value of NODE_ENV. It is
important to note that any configuration in the config files can be
overridden at runtime by setting the NODE_CONFIG
environment variable.

All
environments require at minimum a PostgreSQL database; further
services may be required depending on the PubSweet modules
installed.

Building and
running an app

PubSweet
apps can be started using pubsweet server, but
this is not recommended for production: startup time would be very
long as this command starts a webpack dev server and so compiles
assets every time it is run. Instead you should have a pipeline
with a separate build step that runs yarn install then
runs pubsweet
build to build the static assets. It is important that
NODE_ENV is set to
production when
running pubsweet build or
the wrong app and webpack config will be loaded.

You will
need an entry point that calls the startServer function
from pubsweet-server. In
pubsweet-starter,
the entry point for the server is app.js in the
project root: you can run this directly or using a process manager
of your choice.

Building
with Docker

Coko uses a
hierarchy of Docker images to reduce build times and standardise
images as far as possible. The base image is built inside the
pubsweet/infra
Gitlab repository, (see images/pubsweet-base)
and only defines the Node.js version. You can extend this base
image to ensure you are always running on a compatible Node.js
version.

Our
application Dockerfiles, such as the one in pubsweet-starter,
installs additional dependencies required for testing, namely
Chrome and Firefox.

There is
also an xpub/xpub:base image
stored in the pubsweet/deployment-config
repo which builds a yarn offline cache to speed up the installs on
subsequent layers (containers that use this image).

23

CI/CD pipeline

This
chapter gives some insight into how Coko have set up their
continuous integration (CI) and continuous deployment (CD)
pipeline. You can choose to copy it entirely, or take bits and
pieces. The purpose of the pipeline is to build Docker images from
the latest code, run tests and linting, and create deployments for
every branch pushed to our repos.

You can
find below a graph illustrating the CI/CD pipeline.

CI/CD pipeline

Decoupled
design

Deployment
configuration and scripts are decoupled to allow reuse between
different projects with different requirements. This means that to
get an overall picture of how deployment works for Coko, you need
to look in three places:

	.gitlab-ci.yml: in
the project root, defines the pipeline steps.

	pubsweet/deployer
image: carries out deployment to Kubernetes.

	Configuration repository: holds Kubernetes configuration
templates. For example pubsweet/deployment-config-postgres.

In your own
implementation you are free to provide a custom version of any of
these components.

GitLab
runners

Coko uses
GitLab CI which is the open-source continuous integration service
included with GitLab. GitLab CI acts as coordinator for individual
jobs that are executed by runners. A runner is a computer, usually
in the cloud, running the gitlab-ci-runner
software. You can either use shared GitLab runners, or any set up
your own external one(s). Documentation is contained in the
GitLab docs
repository.

Shared
GitLab runners

If you have
your Git repository hosted in gitlab.coko.foundation, you don't
have to set up the runner yourself. Shared GitLab Runners have
already been set up there and registered with the CI/CD service. In
order to set up the pipeline you will need to create and populate a
.gitlab-ci.yml file
in your project (see below) and configure the project to use shared
runners.

External
runners

If you opt
not to use the shared GitLab runners provided by Coko, you can set
up external Runners and integrate them with your GitLab CI/CD. To
setup your external runners, you need the URL of your GitLab server
and also the registration token for your GitLab repository, which
you can find in the CI/CD settings of your GitLab project.

Jobs
configuration

On how to
configure your jobs with .gitlab-ci.yml, you
can refer to GitLab's .gitlab-ci.yml file
configuration page, and refer to the xPub project as an
example.

Coko's
current pipeline is divided into five stages: build, test, review,
staging and demo.

	Build: build the Docker image, tagged with the CI commit hash,
and push it to the Docker Hub. Subsequent stages pull this
image.

	Test: run unit and end-to-end tests. There are two things to
note: 1. we do not need to provide Postgres ourselves as the
services feature of
GitLab CI does this for us; 2. unit tests and end-to-end tests and
linting are all run in parallel as separate jobs with the test
stage.

	Review: the review stage makes use of the pubsweet/deployer
image (see next section), to deploy the built image on Kubernetes.
The review stage has two jobs, one of which is run automatically
after test to create the deployment, and another which is run when
the branch is deleted to delete the deployment. The URLs for review
deployments are generated dynamically from the branch name.

	Staging: staging is run automatically on merge to the master
branch to deploy master to a fixed address.

	Demo: the demo stage is not run automatically, but can be
triggered to deploy any branch, to a fixed demo address.

PubSweet
deployer image

The
PubSweet deployer image is used on review, staging and demo stages
in tandem with the configuration repository to transform
environment variables in GitLab CI into Kubernetes configuration
objects and push the configuration objects to the cluster.

The image
contains the Kubernetes client (kubectl),
gettext for template
substitution, and a deployment script (deploy.sh). To use
it, the repository to be deployed must meet the following
requirements:

	Kubernetes integration must be set up to enable kubectl to
authenticate to the cluster . See here.

	.gitlab-ci.yaml must
provide the right variables to deploy.sh: 1. An
environment name and url must be supplied for the CI job; The url
must evaluate to less than 64 characters. 2: If deploying from a
monorepo, the job must define a PACKAGE_NAME
variable that will be used to select templates for deploying that
package.

	There must be a CONFIGURATION_REPOSITORY
variable containing the https git url of the repository holding
Kubernetes object templates (which must be publicly
accessible).

	The configuration repository must be in the right format (see
the dedicated section below).

Example
Usage

Include
something like the following in your .gitlab-ci.yml:

variables:
 BASE_DOMAIN: myapp.example.com
 CONFIGURATION_REPOSITORY: https://gitlab.coko.foundation/xpub/deployment-config.git

stages:
 - deploy

deploy:
 image: pubsweet/deployer
 stage: deploy
 environment:
 name: production
 url: "https://${$CI_ENVIRONMENT_SLUG}.${BASE_DOMAIN}"
 script:
 - source deploy.sh
 - create_deployment

By setting
environment.name and
environment.url for
our job, we tell GitLab how to label our deployment and link to it
from the environments page. GitLab also generates a unique
CI_ENVIRONMENT_SLUG
for each environment, which we use inside our templates to name and
label our Kubernetes objects. Through its dynamic environments
feature, GitLab will automatically connect an environment labelled
review/$CI_COMMIT_REF_NAME
to any merge requests for that commit ref.

Monorepo

If
deploying multiple apps from a monorepo, be sure to set
PACKAGE_NAME like
this:

deploy_mypackage:
 image: pubsweet/deployer
 stage: deploy
 variables:
 PACKAGE_NAME: mypackage
 REQUIRES_PROVISIONING: "yes"
 environment:
 name: production
 url: "https://${CI_ENVIRONMENT_SLUG}-${PACKAGE_NAME}.${BASE_DOMAIN}"
 script:
 - source deploy.sh
 - create_deployment

Undeploying

deploy.sh also
provides a delete_deployment
function for use in stopping review apps. It is used in the same
way:

 script:
 - source deploy.sh
 - delete_deployment

This
function will delete everything deployed except Persistent Volume
Claims, which remain in case data needs to be salvaged. To delete
PVCs as well run delete_objects_in_environment
pvc.

Some
gotchas:

	REQUIRES_PROVISIONING
should be set for this job too, if it was set in the deploy job, or
services will not be deleted

	PVCs must never be deleted before delete_deployment is
run. Kubernetes has bugs which can make deleting a StatefulSet
difficult once its associated PVC has gone.

Configuration repository

The
configuration repository holds templates for Kubernetes objects.
PubSweet apps follow a common pattern in terms of their template
requirements. We define four types of Kubernetes objects:

1.
ConfigMap

These
contain configuration that will be injected into the containers to
be run. xpub-elife has two:
one containing a script for seeding the database, another
containing node config.

2.
Deployment

This object
specifies what will actually be run, linking to any ConfigMaps or
volumes and defining the endpoints Kubernetes will use to check the
container status. A deployment is a recipe for creating pods (one
or more), which are sets of containers running on a single node.
That means if your deployment specifies that two replicas should be
maintained, removing one of the two pods will trigger the creation
of a new one. Deployments are
stateless: responsibility for maintaining state is handed to the
database, which is operated using a StatefulSet and a
PersistentVolumeClaim.

The
xpub-elife
deployment specifies a main container and an initContainer. The
latter must exit successfully before the main container will be
started and is appropriate for seeding.

3.
Service

Because
pods are ephemeral, we require another object to keep track of
their network addresses: this is the service. It provides stable
routing to all pods with the label defined under selector via
Kubernetes' native service-discovery mechanism.

4.
Ingress

The last
piece of the puzzle is the ingress object,
which defines how requests to the public gateway should map to
backend services. These are referred to by the name and port
defined in the service object.

Note,
finally, that we deploy all these objects inside a single
Kubernetes namespace, which is that provided by GitLab integration
as KUBE_NAMESPACE

Secrets

The
deployment templates will likely require several custom variables
to be present in the environment. The easiest way to get them there
is to add them as secret variables to the project that you want to
deploy. Some variables you might need are:

DOCKERHUB_USERNAME
(for use in .gitlab-ci.yaml build job)

DOCKERHUB_PASSWORD
(for use in .gitlab-ci.yaml build job)

INK_EMAIL (PubSweet
app config)

INK_PASSWORD
(PubSweet app config)

PUBSWEET_EMAIL
(PubSweet app config)

PUBSWEET_PASSWORD(PubSweet
app config)

PUBSWEET_USERNAME
(PubSweet app config)

PUBSWEET_SERVER_SECRET
(PubSweet app config).

You can
examine the templates to see how the PUBSWEET_* and
INK_*
variables are used.

Repository
and template format

As noted
above, the deployer image expects the configuration repository to
be in the right format, as below:

├── provisioning
│ ├── example-template.yaml
│ ├── another-example-template.yaml
└── templates
 ├── example-template.yaml
 ├── another-example-template.yaml

Kubernetes
object templates for apps must be located in the templates folder. If
you are deploying from a monorepo and not all apps require some
services, place templates for those services in a directory called
provisioning.
Templates will only be deployed from this directory if a special
variable REQUIRES_PROVISIONING
is set on the job. Other requirements are:

	Templates for individual packages in a monorepo must be named
such as PACKAGE_NAME-*.yaml,
where PACKAGE_NAME is the
variable set on the CI job.

	TLS fields should not be added to Kubernetes Ingresses in
templates. The deployment script infers whether TLS is necessary
from the environment.url and
uses this script to generate the appropriate templates. TLS depends
on kube-lego being
installed on the cluster.

	The templates must be formatted for envsubst (part of
gettext).

SECURITY
NOTE: all deployed objects except ConfigMaps will
appear on stdout. To avoid publicising secrets, make sure they are
stored in ConfigMaps or,
better, use Kubernetes secrets.

9

Development Help

Doceas iter et sacra ostia
pandas.

Show me the way, and open wide yon holy
doors.

Aeneid
VI, 109

24

Where can I ask questions?

So. You've
got this far and you're eager to get started. But you still have
so many
questions!

If you have
any questions about PubSweet – from doubts about how it would fit
in your organization, to queries about specific error messages – or
you just want to say hello, your starting point should be the
Coko
Mattermost chat server. It has a number of channels such as
#xpub
or #PubSweet, so if you
know where your question fits, feel free to go directly to those
channels. If you're unsure, go for #Town Square, and
we'll figure it out together.

The
PubSweet community is worldwide, so there's usually someone around
to field questions, no matter the hour. They may not know the
answer, but they should be able to direct you to someone who
does.

If you
already know your question relates to a bug or feature request,
then you can go straight to the PubSweet GitLab repository (it's just one
repository for all packages, so no need to go looking for the right
place), and create a new issue.

Tamlyn (eLife) and Yannis (Coko) pondering questions
about PubSweet

25

How can I debug?

Are you struggling to get your application
to run, and no-one on Mattermost can figure it out? It might be
time to have a go at debugging yourself. Depending on what you are
trying to debug, the client side or the server side, the approaches
vary.

Debugging
code running on the client

The
following instructions are for Google Chrome but the process is
similar for other web browsers.

Chrome
Developer Tools is accessible from the menu. The most important
tabs are Network, which shows HTTP requests and responses, Console,
which shows errors and logging, and Sources, which allows setting
execution breakpoints.

The React Developer Tools extension is highly
recommended as it enables viewing of the component hierarchy and
inspecton of the data passed as props to each component.

The
Apollo Developer Tools extension provides an
alternative view of the GraphQL HTTP requests and also shows the
contents of the local cache.

Debugging
the code running on the server

Node.js has
a built in debugger which can use Chrome Developer Tools as an
interface. Enabling the debugger is a multi step process (Mac/Linux
only):

	Start the application as usual e.g. pubsweet start

	In another terminal/tab run pgrep -f startup/start.js |
xargs kill -sigusr1

	You should see the text "Debugger attached" in the terminal in
which the app is running.

	Open a new tab in Chrome and visit the URL chrome://inspect

	You should see one entry listed under "Remote Target".

	Click "inspect".

You can now
set breakpoints and step through execution of your server code.

Note that
you must repeat the process if you restart the server or if it is
restarted automatically due to a code change. This is not ideal,
and an alternative, simpler method of debugging is planned. As an
alternative, debugging with console.log is a
surprisingly good option.

26

Contributing to PubSweet

PubSweet is
both an open source software project and an open community,
part of the broader Collaborative
Knowledge Foundation (Coko) community. We welcome people of all
kinds to join the community and contribute with knowledge, skills,
expertise. Everyone is welcome in our chat room.

Coko Community Meeting

The core
modules and components are developed and maintained by a dedicated
team and a community of contributors. Anyone is welcome to
contribute ideas, issues, and code. Development is managed in the
PubSweet project on the Coko Foundation GitLab instance. We track
high-level PubSweet issues and discussion in the project-wide issue tracker.

In order to
contribute to PubSweet,you're expected to follow a few sensible
guidelines.

Search
first, ask questions later

If you want
to create a new component or if you've experienced a bug or want to
discuss something in the issue trackers, please search before you
start developing to find out whether it already exists.

Discuss your
contribution before you build

Please let
us know about the contribution you plan to make before you start
it. Either comment on a relevant existing issue, or open a new
issue if you can't find an existing one. This helps us avoid
duplicating effort and to ensure contributions are likely to be
accepted. You can also ask in the chat room if you are unsure.

For
contributions made as discussions and suggestions, you can at any
time open an RFC in our issue tracker and PubSweet community
members will be happy to jump into a discussion.

Use merge
requests

We maintain
master
of the PubSweet monorepo (a Lerna-managed single repository with multiple
packages) as the production branch, and tag it with release names.
If you wish to contribute to PubSweet, you need to make a branch
and then issue a pull request following this procedure:

	Create a user account on Coko
GitLab

	Clone master with
git clone
git@gitlab.coko.foundation:pubsweet/pubsweet.git

	Create a new branch and work off that. Please name the branch
which sensibly identifies the feature you are working on. You can
push the branch to Coko Gitlab at anytime.

Use
Conventional Commits

An automated process will reject your
commit if it doesn't follow the commit guidelines. All notable
changes to the work will be automatically documented in a
CHANGELOG.md file.
See Conventional
Commits for commit guidelines.

Merge
request workflow

Merge
requests should be marked as WIP: (Work In
Progress) until they are completely ready to be reviewed. When you
think the MR is ready, remove the WIP label and a member of the
PubSweet team will review the changes. Once any requested changes
or problems have been resolved, the MR will be considered for
merging. We encourage feedback and discussion from as many people
as possible on Merge Requests.

Before merging, all MRs must fulfill these
three simple rules:

	It must pass the tests.

	It must not reduce the test coverage.

	If the MR is a bug fix, it must include a regression test.

27

Testing

PubSweet
uses Jest for
unit and integration testing of both client and server
components.

Client
components

Client
PubSweet components tend to be composed of one or more React
components. Writing meaningful tests for React components can be
tricky, and will vary depending which paradigm the component uses
(e.g. presentational and container components, higher order
components, render props).

We
recommend using enzyme to
shallow render components and focus on testing logic rather than
rendering.

For a
simple presentational component, it may be appropriate to have a
single test that just ensures it can render without errors. If a
container component defines no logic then it can be seen simply as
configuration. In this case it may be appropriate to have no unit
tests, provided end-to-end test coverage is sufficient.

More
commonly, a component will have a number of tests which execute the
various logical branches rendering the component with different
props and, optionally, simulating events. Here is an example test
for a component with some basic conditional logic:

import React from 'react'
import { shallow } from 'enzyme'
import MyComponent from './my-component.js'

const makeWrapper = (props = {}) => shallow(<MyComponent {...props} />)

describe('myComponent', () => {
 it('is not loading initially', () => {
 const wrapper = makeWrapper()
 expect(wrapper.text()).not.toContain('Loading')
 })

 it('displays loading message', () => {
 const wrapper = makeWrapper({ loading: true })
 expect(wrapper.text()).toContain('Loading')
 })
})

Server
components

Server
PubSweet components will tend to define one or more REST endpoints
or GraphQL queries and resolvers. Strict unit testing of these
functions requires mocking the database which is a lot of effort
and doesn't catch certain errors such as incorrect database
queries. Integration testing has been found to be a more productive
approach. PubSweet includes test helpers to setup an empty
PostgreSQL database for each test suite. Tests can then set up the
data as necessary before each test, run the query and then assert
against either the response or the final state of the database.

Below is an
example of how we might test a server component that uses GraphQL.
Note that we test the resolver directly instead of starting the
server:

const { createTables } = require('@pubsweet/db-manager')
const { Mutation } = require('./resolvers')
const db = require('./db-test-helpers')

const testData = {
 username: 'testuser',
}

describe('My component', () => {
 beforeEach(async () => {
 await createTables(true)
 })

 it('Saves a user', async () => {
 await Mutation.saveUser(_, testData)
 expect(db.fetchUsers()[0]).toMatchObject(testData)
 })
})

Components
that access remote services (such as ORCID) can use node-replay to
record and then playback the HTTP responses. This allows easy
writing and updating of tests while ensuring that future test runs
are not affected by network issues or the remote service being
temporarily unavailable.

How to test
an app

End-to-end
testing is useful for testing complete flows through the app and
ensuring that all the components work together. The test runner
loads the app in a real browser and allows test scripts to interact
with it as a user would.

Since these
tests reside in your application, you are free to use any test
runner, however we use and recommend TestCafe. Unlike most other
end-to-end testing tools, TestCafe is not based on Selenium. This
allows it to be both faster and less susceptible to test 'flake'
where subtle timing issues cause tests to fail intermittently.
Furthermore, using the same tools as other PubSweet community
members leads to increased opportunities for code and knowledge
sharing.

Below is an
example TestCafe test to check that we can fill out part of a form
(a dropdown and a text field):

test('Happy path', async t => {
 await t
 .expect(Selector('[name=title]').value)
 .eql('This is a title')
 .click('[role=listbox] button')
 .click(Selector('[role=option]').nth(0))
 .click(Selector('[id=myform-select'))
 .pressKey('enter')
 .pressKey('down')
 .pressKey('enter')
 .click(Selector('[name="myform.somefield"]').parent())
 .typeText(
 '[name="myform.somefield"]',
 'Hello!',
)
 .click('[data-test-id=submit]')
})

10

The Future

...“Poscere fata

tempus” ait; “deus, ecce,
deus!”

“Ask now thy doom!—the god! the god is
nigh!”

Aeneid
VI, 45-6

28

Where are we going now?

Where are
we going now with PubSweet?

The
community will decide. PubSweet doesn't determine its own
direction: it is a community effort. As members of the community
identify needs, we move those needs to the front of the queue and
try to meet them together. At the risk of sounding glib, the answer
to “Where is PubSweet headed?” is “We don't know. You tell us.”

However we
can speak about some issues the comunity is currently discusssing.
Possibly the biggest issue for now and the foreseeable future is
reuse. Reuse is a core principle of the PubSweet approach and the
Coko community. Reuse, however, is hard. Identifying the best unit
of reuse, is hard, and so is identifying the best practices.
Finding the right approach requires quite a bit of upfront
communication and analysis that can at times feel like slow going.
When the community comes to a consensus, however, implementation is
rapid.

We have
made a lot of progress on reuse issues already, notably with the
sharing of UI components — atoms and molecules. This achievement is
a significant, as sharing of design resources is seldom attempted
in open source projects. With no established open source norms to
follow, we had to pursue our own process of discovery and
resolution. In other words, we had to make it up as we went along.
In exchange for a modicum of delay, we pioneered a new way of doing
things and gained valuable experience that we can feed back to the
wider open source community.

It is
obvious now that we need to address issues about reuse on the data
model level as well. How prescriptive do we have to be? How open
ended can we be? Prescriptiveness helps reuse, but stifles
individual approaches to a problem, or doesn't anticipate questions
we had yet to consider. Open-endedness fuels creative individual
solutions and new use cases, but hampers reuse. We will address
these questions in forthcoming PubSweet community meets and find
effective ways to walk the line.

So it is
with community. One step at a time. It often feels like the same
pattern: identify a problem, talk about it, develop a shared
lexicon, learn to talk increasingly accurately about the problem,
refine the problem, propose targeted solutions that get better with
discussion, drive towards consensus.

As we grow,
maintaining effective communication channels will become a
challenge. How do open up the close communication between the three
founding partners – Hindawi, eLife and Coko – to new organizations?
We are very careful as we bring on board new organisations to help
them get started developing their platform rapidly and to include
them in these communication channels, and help orient them with the
community. How will this work when we have 5 more organisations
join the community, or 10, or 50? We don't know right now, but
we'll figure it out.

Were you
looking for a chapter about the future of the technology?

PubSweet is
a product of the community. The community is the future.

Glossary

PubSweet
terms

	Atom —
Smallest bit of reusable UI from the PubSweet-UI component

	Authsome —
Attribute-based authorization module that's tightly integrated into
PubSweet

	CSS
Override — a flexible way of overriding the style of a
component without editing it

	Component — A
composable part (a client or server part) that makes up a PubSweet
application

	Editoria — the
book production platform designed by and for the University of
California Press and built with PubSweet.

	Editoria
Typescript — "Editoria-flavored" HTML produced by XSweet for
importing into Editoria

	Gitlab — the
source code managament software on which PubSweet is hosted

	INK — the Coko
project designed to process jobs of any kind that don't fit into
the PubSweet framework e.g. file conversion.

	Jitsi — the
video conferencing software with which Coko meetings are
undertaken

	Manuscript —
in book and journal workflows, this is the publishable object you
are working on before it gets
published. After publication, the same objects are refered to
respectively as books and articles.

	Mattermost —
the chat software which serves as a hub for PubSweet community
discussions

	Molecule — UI
component made of at least two atoms

	Monorepo — a
single source code repository that defines multiple, related
packages

	PubSweet — the
thing this book is about

	PubSweet CLI —
A command-line interface to PubSweet and PubSweet apps

	PubSweet
Starter — A minimal starting point for a PubSweet
application

	PubSweet
Styleguide — A live styleguide of PubSweet's React
components

	PubSweet UI —
A package containing many UI components (buttons, drop-downs etc.)
that are reused across PubSweet applications

	Team — in
Authsome, one or more users with the same access rights

	Team-based access
control — A way to use teams to determine permissions that a user has for an object

	Theme — A
collection of set theme variables

	Theme variable
— A variable dealing with a certain styling aspect, such as the
color of the background

	Typescript —
HTML produced by XSweet. Not to be confused with TypeScript which
is a programming language.

	Workspace —
the 'block' level spaces used in the PubSweet universe to support
your desired workflow eg. Dashboard, Article Page etc

	XSweet — the
tool produced by Coko for converting docx to HTML. Free your docs
and your workflow will follow!

	xPub — the
general category name for all the journal systems made using
PubSweet. This group didn't really need a name but xPub sounded so
cool we thought we might as well use it.

Colophon

This book
written with Editoria and facilitated by Book Sprints.
The book was rendered to print ready PDF by Vivliostyle. The body
text of the book is set in Spectral, designed by Production Type for Google and available on Google fonts while the headings are composed in Fira
Sans and all the coding is set in Fira Code, both designed by
Erik Spiekermann, and available from Mozilla. This book is licensed CC-BY-SA.

The book
was printed by Pixart printing during the month of June 2018.

EPUB/images/image-39-0.png

EPUB/images/image-5-0.png

EPUB/images/image-1-0.png

EPUB/images/image-28-0.png

EPUB/images/image-7-0.png

EPUB/images/image-9-0.png

EPUB/images/cover.jpg

EPUB/images/image-34-0.png

EPUB/images/image-36-0.png

