
PubSweet 2.0 RFC
by Jure Triglav, July 2017

PubSweet Lead Developer and Architect

Many thanks to Adam Hyde, Alf Eaton, Richard Smith-Unna, Kristen Ratan, and Nicole
Martinelli for helping improve this document.

The aim of this document is to briefly describe the current state of PubSweet 1.0, and outline,

for discussion, a suggested path to PubSweet 2.0.

RFC discussion (please add all substantive comments here):

https://gitlab.coko.foundation/pubsweet/pubsweet/issues/16

https://gitlab.coko.foundation/pubsweet/pubsweet/issues/16

1. Inception 3

2. The Current State - PubSweet 1.0 5

pubsweet-cli 5

pubsweet-server 5

pubsweet-client 5

pubsweet-components 6

Authsome (PubSweet authorization) 9

The basic architecture of a PubSweet app 11

PubSweet models 12

Collections 12

Fragments 13

Users 13

Teams 13

3. Lessons learned 15

4. PubSweet 2.0 proposals 17

A. Replace ORM code with an existing library 17

B. Replace PubSweet CLI scaffolding code an existing library 17

C. Extend the PubSweet CLI to improve utility for developers 17

D. Simplify the project structure 18

E. Extending component models 18

Dashboard (admin) 18

Editor 18

Blog landing page 19

Comments 20

F. Utilize GraphQL for API queries 20

5. Suggested roadmap 22

1. Inception
PubSweet is a framework for developing publishing workflows. It was conceived by Adam Hyde

in late 2015, his main objectives at the time were to design a framework to:

● Lessen the effort to build publishing platforms that meet a wide range of use cases,
including different content types, divergent work�ows, etc.

● Increase the reusability of code

● Leverage technologies that heighten the opportunities to build developer community

● Leverage technologies that are within the development budget and staffing reach of as

many publishers as possible

● Support a cultural shift from workflow optimization to innovation

● Give publishers a choice in how they work

Adam mapped out some ideas for a highly decoupled system built with JavaScript. The initial

architecture of the framework was then hashed out over a number of meetings between Adam,

Michael and Oliver from Substance and myself in late 2015. Development started in earnest 18

months ago after a brief period of R&D. At the time, I was the sole developer but since then

Richard Smith-Unna and Alf Eaton joined the PubSweet Core team.

Our aim in these early meetings was to lay the foundations for a framework that would

eventually enable non-developers to assemble a publishing platform of their choice using a UI

and existing components. It’s a lofty, ambitious aim but not at all unrealistic -- although it may

take us some time to get there. In the meantime (and for as long as PubSweet exists) we must

focus on supporting developers, especially component developers, to easily develop publishing

workflows with minimal effort. Consequently, further improving developer experience is the

primary theme for PubSweet 2.0.

We also had many additional technical aspirations for PubSweet in those early meetings, most

of which have been reached. A distilled list of those early goals include:

● Develop a custom component for PubSweet within a day

● Hello World in a couple of hours!

● Slim server API

● Easy install

● Easy access management

● Hard problems are solved by the library

● Natural, block-level configuration

● Client-side only SDK

● Follow SemVer

Eighteen months after those initial meetings, we now have a version 1.0 of PubSweet. This

release is a coherent framework that faithfully represents our initial assumptions and ideas.

Along the way, we've learned a great deal about how to build an app framework that supports

a wide variety of publishing workflows and solves shared under-the-hood needs like flexible

http://substance.io/

authorization, file conversion, real-time updates, content formats of choice, publishing service

integrations, etc.

On top of implementing what we initially designed, we've also successfully supported an

innovative web-based scholarly monograph production platform built in collaboration with the

University of California Press using PubSweet - Editoria (this week at its 1.0 release). We’ve also

started development of a PubSweet-based Journal platform - xpub in collaboration with the

Collabora Psychology journal. It’s likely that in the near future many more journal solutions and

additional publishing use cases such as micropubs and preprint workflows will be built with

PubSweet.

So let’s take a closer look at PubSweet 2.0. We aim to be as community-centric as possible, so

we’re opening this document up for your review and comments. We hope this will open the

door for voices outside Coko to take ownership of, and help improve, the vision and

implementation of PubSweet. We strongly believe the best road to changing publishing is

through combined community effort.

You can reach out to us in Mattermost, or add comments to the Gitlab RFC issue, links below:

Chat:

https://mattermost.coko.foundation/

RFC (please add all substantive comments here):

https://gitlab.coko.foundation/pubsweet/pubsweet/issues/16

http://editoria.pub/
http://editoria.pub/
https://mattermost.coko.foundation/
https://gitlab.coko.foundation/pubsweet/pubsweet/issues/16

2. The Current State - PubSweet 1.0
Our PubSweet ecosystem currently consists of several logically separated parts - the PubSweet

Command Line Interface, PubSweet Server, PubSweet Client and the PubSweet Components

(whose lovely icons are the handiwork of by Henrik van Leeuwen.)

pubsweet-cli

The PubSweet command-line interface is the entry point into the PubSweet

universe. It enables easy creation of new applications (comes with an initial

app that prepares the basics for PubSweet development), with ‘ pubsweet new ’,
adding and removing components with ‘ pubsweet add ’ and ‘ pubsweet remove ’,
managing databases with ‘ pubsweet setupdb ’ and ‘ pubsweet adduser ’, and

running applications with ‘ pubsweet run ’. It’s been thoroughly tested and every

merge request goes through continuous integration.

pubsweet-server

PubSweet-server is a Node.js web server, using Express.js as the HTTP server,

backed by either PouchDB or CouchDB document store, this is a solid and

extendable (with components) server-side solution for publishing apps. The

document store is abstracted away by a Model layer (Collection, Fragment,

User, Team) with support for complex validations (extendable/configurable by

apps) using JOI, https://github.com/hapijs/joi , and support for relations using

relational-pouch . All of the server’s API endpoints come with Authsome built

in (an attributes based authorization system, more on this later), which allows for both simple

and sophisticated configurable authorization within workflows. Additionally, key endpoints

support live/real-time updates in coordination with pubsweet-client. It’s been thoroughly tested

and every merge request must pass continuous integration.

pubsweet-client

PubSweet-client is a React application with a central state store (using Redux)

extendable with components. It supports the Authsome system (for visual

indications of current user’s permissions) and supports live/real-time updates.

This application is built with 'webpack’, and so comes with support for

optimisation features (tree-shaking/dead code elimination) and features that

make development easier and allow for faster iteration (hot module

replacement). Additionally, it comes with a custom-built Webpack theme plugin

(pubsweet-theme-plugin), allowing for easy SCSS styling. It’s also been thoroughly tested and

each merge request must complete continuous integration.

https://gitlab.coko.foundation/pubsweet/pubsweet-cli
https://gitlab.coko.foundation/pubsweet/pubsweet-server
https://github.com/hapijs/joi
https://github.com/hapijs/joi
https://github.com/pouchdb-community/relational-pouch
https://github.com/pouchdb-community/relational-pouch
https://gitlab.coko.foundation/pubsweet/pubsweet-client
https://gitlab.coko.foundation/pubsweet/pubsweet-theme-plugin

pubsweet-components

Components are at the core of the PubSweet developer experience and we’ve

gone through a lot of iterations to arrive at the current system. We have

server-side and client-side components. These are full members of a

PubSweet app. Server-side components have the ability to add API endpoints

(e.g. the INK server component adding ‘ /api/ink ’), have access to models and

the database, and can add middleware (a component that runs for every

server request, e.g. logging). Client-side components are simply React

components (our client-side app is built with React) and can be used as views, or as sub-views

in a web application (e.g. a PostsManager is a full view, FormGroup is a sub-view), and they have the

ability to integrate with the central Redux store. What they do is completely up to the

developer, in other words, the client-side components can do everything a React component

can do, everywhere.

An ever-growing list of components is hosted in a Lerna -managed monorepo, for both server

and client applications, these are reusable first-party components that provide INK (file

conversion engine) interaction, OAuth functionality, text editors, dashboards and many more.

.

├── lerna-debug.log
├── lerna.json
├── package.json
└── packages
 ├── Blog (CLIENT - landing page for a blog, listing summaries of blog posts)
 ├── Draft.js (CLIENT - Facebook's Draft.js in an editor component)
 ├── Epub (SERVER - component for creating Epubs from collections & fragments)
 ├── FormGroup (CLIENT - input field with automatic validations, based on config)
 ├── InkBackend (SERVER - proxy to an instance of INK)
 ├── InkFrontend (CLIENT - use of the INK endpoint from a client-side application)
 ├── Login (CLIENT - username and password login view)
 ├── Manage (CLIENT - a host component for an application)
 ├── Navigation (CLIENT - customizable top navigation bar)
 ├── PasswordResetBackend (SERVER - password reset component, email notifications)
 ├── PasswordResetFrontend (CLIENT - password reset forms component)
 ├── PepperTheme (CLIENT - styling/theme component)
 ├── PostsManager (CLIENT - admin dashboard for blogposts)
 ├── ScienceReader (CLIENT - Substance-based reader component)
 ├── ScienceWriter (CLIENT - Substance-based editor)
 ├── Signup (CLIENT - signup forms)
 ├── TeamsManager (CLIENT - team management, creating and updating teams)
 └── UsersManager (CLIENT - user management)

While the core PubSweet team is developing the above components (first-party components),

there are also third-party components in development. Editoria’s project, for example, has

https://gitlab.coko.foundation/pubsweet/pubsweet-components
http://ink.coko.foundation/
http://ink.coko.foundation/
https://github.com/lerna/lerna
https://github.com/lerna/lerna

developed the Wax editor (a componentized web-based Word Processor based on Substance)

and the BookBuilder component (for managing workflows/interactions in book production).

In addition, the early development of a set of journal components can be found in the xpub

project (a PubSweet-based Manuscript Submission System):

.

├── components
│ ├── App.js
│ ├── DecisionForm.js
│ ├── DeclarationAnswers.js
│ ├── DeclarationQuestions.js
│ ├── EditorForm.js
│ ├── EditorList.js
│ ├── Navigation.js
│ ├── Project.js
│ ├── ProjectActions.js
│ ├── ProjectList.js
│ ├── RemoveProject.js
│ ├── ReviewForm.js
│ ├── ReviewerInvitationForm.js
│ ├── ReviewersForm.js
│ ├── ReviewersList.js
│ ├── RolesSummary.js
│ ├── RolesSummaryItem.js
│ ├── SnapshotActions.js
│ ├── Snapshots.js
│ └── UploadManuscript.js
└── containers
 ├── AuthenticatedContainer.js
 ├── DeclarationsContainer.js
 ├── EditorsContainer.js
 ├── NavigationContainer.js
 ├── ProjectContainer.js
 ├── ProjectListContainer.js
 ├── ReviewersContainer.js
 ├── RoleContainer.js
 ├── RolesSummaryItemContainer.js
 ├── SnapshotsContainer.js
 ├── UploadManuscriptContainer.js
 └── WaxContainer.js

Note that with the recent work on the Wax Editor and xpub, we’re also breaking components

themselves down into even smaller reusable pieces (components of components, if you will).

https://gitlab.coko.foundation/editoria/wax-pubsweet
https://gitlab.coko.foundation/editoria/wax-pubsweet
http://substance.io/
https://gitlab.coko.foundation/xpub/xpub
https://gitlab.coko.foundation/xpub/xpub

Wax Editor (PubSweet Component)

Consequently, there’s already a wealth of components available and we’re actively working on

helping others build third-party components by creating a developer’s resource at

pubsweet.org (under construction). You can also find many of the components registered on

npmjs .

All of the development for a PubSweet application (e.g. Editoria, xpub) happens at the

component level. We encourage reuse of as many existing components as possible when

building a publishing workflow with PubSweet.

The Collaborative Knowledge Foundation has also, in parallel, developed a methodology

(collaborative design sessions or “ The Cabbage Tree Method ” CTM) that helps use-case

specialists design systems. The way these sessions have gone so far maps incredibly well onto

components.

In addition to the above parts of the PubSweet universe, to understand PubSweet we also need

to look at Authorization, the basic architecture of a PubSweet app and PubSweets Model

System.

http://pubsweet.org/
http://pubsweet.org/
https://www.npmjs.com/search?q=pubsweet&page=1&ranking=optimal
https://www.adamhyde.net/what-is-the-cabbage-tree-method/

Authsome (PubSweet authorization)

Authsome is an Attributes-Based Access Control (ABAC) system that we built to seamlessly

manage authorization for both simple and complex publishing workflows. Publishing

workflows require that various users have been granted access to specific resources dependent

on a number of variables, for example:

1. A copy-editor can edit a paper only when that paper is in a copy-editing state

2. A reviewer can read a paper if that paper is in a review state, can add comments to that

paper, but cannot edit the paper

3. A co-author can edit a paper if the author added them to the team of contributors and

the paper has not yet been submitted

4. A technical check contractor can edit a paper’s metadata (and no other properties), only

when the paper is in a TC state, and not placed on hold by a senior editor

5. A book author can respond to a copy editor comments when the book is in the review

state, can show/hide track changes (but can not turn track changes off), but is not

permitted to edit the content

You can see the number of conditional variables for access control can balloon and while

system designers need to aim to keep authorization variables to a minimum it is not always

possible. Fortunately, Authsome can manage both simple and complex scenarios and enables

the more complex modes (see below) to be easily optimized over time.

Authsome manages a huge variety of different -- publisher specific -- access requirements by

connecting users, teams of users and objects (such as fragments and collections) with what we

call Authsome Modes - custom authorization modes written for a specific use case (e.g. a

scientific blog mode, a book production mode, Editoria’s mode, etc). Importantly, it’s also easy

to model a simpler role-based authorization system using Authsome if required, by naming

teams according to roles. But since Teams can also be conditionally active (e.g. only active

before 3 p.m., only active if the object’s state is ‘reviewing’), more complex authorization

approaches can also be achieved.

Below is an example implementation of the Authsome with an example mode.

https://en.wikipedia.org/wiki/Attribute-based_access_control

The basic architecture of a PubSweet app

When all of the moving parts above play together, they form a PubSweet application. Getting

from scratch to something you can start developing with is easy using the ’ pubsweet new ’
command. This creates a minimal scaffolding in a new Git repository. You can start developing

immediately by running the app in a development environment using ’ pubsweet run —dev ’. This

will start a pubsweet-server instance, compile and serve the client-side app using ‘webpack’,

and monitor your files for changes (automatically reloading or rebuilding when appropriate).

Applications built with PubSweet have an easy-to-read architecture, shown here:

High-level architecture overview of a PubSweet app

PubSweet models

We’ve designed a model system that can account for a wide variety of publishing workflows. It

achieves this by being quite generic while also allowing for sub-typing. The example below

illustrates this with an example PubSweet ‘scientific blog’ application.

Model structure for a 'scienti�c blog'

In this example using PubSweet 1.0, there’s one Collection , it represents the entire blog and has

connections to all existing blogposts, represented by Fragments . In the Fragment example, you

can see the subtyping, ‘ kind = blogpost ’. Both Collections and Fragments have owners, one of

only two fixed, baked-in/hard-coded, authorization based ideas in PubSweet; the other is the

admin. Each collection or fragment has at least one owner and each PubSweet app has at least

one admin. The extent of permitted actions for these two types of users is defined elsewhere

using Authsome Modes.

There are many Users and those users can belong to multiple Teams . Teams are formed around

either a Collection or a Fragment and the interaction between these forms the backbone for

our authorization system (who can do what to an article/book/chapter etc, and when). Again,

the limits of permitted actions for users and team members are defined in the configured

Authsome Mode.

The model system talks to the current database of choice, PouchDB, which can also be

replaced with CouchDB in a production/high-volume setting.

On the client-side, a central store/layer enables interactions with all of the above models, as

long as the current user has the permissions to do so.

Let’s look at the individual parts of the data model in detail.

Collections

A Collection is a versatile model/data type that represents groups of fragments. It has its own

metadata and links to the collection’s fragments.

To expand a bit on Collections, here are few more examples:

● In the case of a journal application, a Collection can represent the entirety of a journal, a

volume of the journal, an issue of the journal, or individual articles

● In the case of a book production application, a Collection can represent the entire

corpus of books published, a single book or a series of books.

● In the case of a collaborative editor application, a Collection can represent the list of

documents

Fragments

A Fragment is a model representing a single item. It has its metadata and the content of the

item it represents. Again, let’s look at a few examples:

● In a journal application, a Fragment can represent an article, a section of the article, a

graph or illustration in the article, or supplemental information.

● In a book production application, a Fragment can represent a chapter, a table of

contents, a footnote, or a preface.

● In a collaborative editor application, a Fragment can represent a single document, a

comment on that document or a drawing in that document.

How users actually end up modelling the data is not prescribed and a system of Collections

and Fragments provides a lot of flexibility, and supports a huge variety of publishing use cases.

Users

A User is a model representing a registered user in a PubSweet application. It contains its

required data, the email, username, password (stored as a strong bcrypt hash) and admin

status, metadata (e.g. OAuth information) and links to the user’s teams and the collections and

fragments it owns.

Teams

Teams form an integral part of the authorization system PubSweet uses. All teams have a team

type, available types are defined in the configuration, a team name, an object the team is based

around (e.g. a collection or a fragment) and its members.

A team type is defined like this:

teamContributors: {
 name: 'Contributors',
 permissions: 'create'
 active: function (paper) {
 return paper.status === 'writing'
 }
}

The above team grants the ‘create’ permission (what that means is defined in the Authsome

mode) on the team’s object (either a fragment or a collection) for all members of teams of this

‘teamContributor’ type, if the object’s status is equal to ‘writing’.

The team activity is a crucial piece of the authorization puzzle, since it allows us do object

state-based authorization (who can do what if a paper is in ‘review’, or a paper is in

‘copy-editing’ mode, etc.), but also other, wider state-based functionality (e.g. time-based

authorization control for shifts). Authsome modes have access to users, teams, collections and

fragments, and so can base a permission decision on all of the relevant states.

3. Lessons learned
Building a system with this many moving parts involves a lot of small iterations on small parts of

the code and while each individual change is small, they add up over time. We’ve dedicated a

lot of time to make each subsystem as stable and as well-tested as possible, yet there are

subsystems that stand out in terms of how much resources we’ve spent to keep them spotless.

To be more specific: We’ve dedicated a lot of resources to ‘pubsweet-server’, but a

disproportionate amount of that time has been spent on managing relations using an object

store within pubsweet-server. This is surprising, because the object relations manager (ORM) is

a small portion of the overall code and functionality, but it had the most critical bugs of the

subsystems (we had a similar issue with the scaffolding code in pubsweet-cli). It’s even more

surprising because object relations are a generally solved problem in the JS ecosystem

(Bookshelf.js, Sequelize, Objection and friends). However, at the time we looked at all of the

projects listed above, but each had a flaw or two (too many open issues, too few recent

contributions, bugs) and each initially looked somewhat like a solution that meant starting over.

Whereas, our own (yet to be built) wheel, would of course be much better, not have those flaws,

and generally be a lot easier maintain and extend! (That wasn’t the case in the long run, see

reasons above.) It turns out that a much better way to approach this would be to pick an

existing, even if somewhat broken wheel, fix it then contribute the fixes to that project’s

community. Which is, of course, what open source is all about.

This brings forward our first guiding principle for PubSweet 2.0 :

Be more rigorous in �nding and using existing working wheels and provide
improvements to those, if needed, instead of building our own.

This approach fits very nicely with the way that the Collaborative Knowledge Foundation works

across all projects - focusing on using existing open source projects as much as possible and

contributing back upstream with fixes and comments as much as we can. Of course we have

followed this principle in most cases with PubSweet 1.0 and have improved a lot of the existing

projects out there by commits to tools such as ‘yarn’, ‘webpack’, ‘prompt’, ‘node-config’, ‘lodash’,

‘substance’ and others. On top of that, we’ve provided functionality feedback and bug reports to

many more. Yet we could do better, particularly with the ORM code and pubsweet-cli.

Of course, this goal must be balanced with avoiding straying too close to the bleeding edge.

We’ve been very lucky that almost all of our choices (e.g. webpack, jest, and yarn) involving

relatively new libraries have paid off pretty well in the long term. In the short term, there’s a

little pain, but it’s worked out well as the libraries improve. It’s a tricky line to walk and we

continue to weigh the costs and benefits for each library we adopt while bearing in mind we

can not always be right. Periodic review and an openness to improved choices is something we

will continue to abide by.

Looking back, it’s also clear that PubSweet’s vision is strongest with the components. If

PubSweet is doing its job, then developers can focus purely on building and innovating on the

component level. The more components exist, the more powerful the PubSweet universe

becomes and the quicker it is to solve existing publishing problems and foster innovations.

This brings us to our second important focus for PubSweet 2.0

Focus on improving component developer experience.

That’s not to say the current experience is bad -- far from it. It’s pretty easy to develop a

PubSweet component, but we should aim for the highest bar possible when it comes to

improving component developer experience. There are many things we can do towards this

from the obvious - better documentation and a clearer project structure - to the more

sophisticated such as improving the utility of pubsweet-cli.

Finally, I believe we need to improve flexibility in the components data model. Currently, all

components are bound to our data model consisting of Collections, Fragments, Users and

Teams. An editor for a journal paper works on a fragment, a dashboard component works on a

collection. But it a new PubSweet developer might rightly ask, for example, what happens

when we have a component that deals with reviews, are reviews also fragments? Which

collection do they belong to? What about files, are they also fragments? The answer: they could

be. Fragments are so general that they can describe anything, but it can get confusing for the

uninitiated and may cause more cognitive drag than necessary when developing larger

applications.

Which brings us to my recommended third and (possibly) final aim for PubSweet 2.0:

Enable PubSweet components to extend the PubSweet Model System.

This enables component developers to design their own models if they wish to. This also, of

course, makes components, as first-class citizens of the PubSweet ecosystem, extremely

powerful. Which is what we want!

With these thoughts in mind, I’ve put together a list of recommendations for PubSweet 2.0. The

intention of this document is to generate discussion around these issues so we can make the

best decisions possible and ensure we meet the needs of our growing community.

4. PubSweet 2.0 proposals
The following are the proposals for PubSweet 2.0. They’re all up for discussion!

They grow out of our three guiding principles from the lessons learned above:

1. Be more rigorous in finding and using existing projects and provide improvements to

those, if needed, instead of building our own.

2. Focus on improving component developer experience.

3. Enable PubSweet components to extend the PubSweet model system.

A couple of quick notes before we dive into details. In parallel to these proposals it’s important

that we improve, and maintain, developer resources. This will be achieved with dedicated

resources provided by Coko outside the developer team. Any additional help here from

documentation writers, community experts, workshop leaders, designers etc. is very welcome.

Additionally, I believe we need to normalize some of the language around PubSweet.

Component scope, for example, varies from forms to views, but we have multiple ways of

talking about it. Any comments focused on improving and stabilizing the PubSweet lexicon will

be very much appreciated.

I put the following changes up for discussion for PubSweet 2.0.

A. Replace ORM code with an existing library

Following the rationale and example above, replacing our own code for object relationships

with an existing library is a necessary first step. We’ve looked again at the number of options

available and Bookshelf.js looks to be the strongest contender in terms of its API and features,

but, again, it’s up for discussion.

B. Replace scaffolding code with an existing library

While PubSweet CLI does many things one of its most important functions is to create the

scaffolding for an initial app. Since there are very good existing projects that create scaffolds,

such as Facebook’s create-react-app (client-side), Express.js’ express-generator (server-side),

`yeoman` generators (client and server-side) and others, the bespoke scaffolding code could be

replaced with one or more of the above generators.

C. Extend the PubSweet CLI to improve utility for

developers

PubSweet CLI does a lot, however it could do more to support developers, namely more options

in the context of ops (e.g. backup database, restore from backup), and more features to support

development and introspection. At the very least, the importing of components through the CLI

and creation of routes would be beneficial but this topic is wide open for suggestions.

D. Simplify the project structure

The current project structure has a fairly well organized file structure but it is worth revisiting

this periodically. If you can see any ways to simplify what we currently have, this is a great time

to speak up.

E. Extending component models

This item possibly requires the most explanation. There’s a lot of value in a clean and

understandable data model, for example: a paper is a Paper and a review is a Review, and a

Paper can have many Reviews and Files. But if we define a data model like that from the start

(currently the case with the generic collections and fragments), then we're limiting the

use-cases of PubSweet to applications described by that model (in the above case, journals),

and that's something we don't want. So how do we get clean, accurate, specific and flexible

data models? I propose we extend the component system to allow a component to first, bring

its own schema and second, to extend the existing components' schemas.

Let's try out an example with a scientific blog, breaking it down into components and schemas:

Dashboard (admin)

A dashboard for a scientific blog deals with BlogPosts , it lists them and shows actions one can

take (create a new blog post, edit or delete it). The data model it needs to operate is a table of

blog posts, something like this:

type BlogPost {
 title: String
 createdAt: DateTime
 id: ID! @isUnique
 updatedAt: DateTime
}

If we build an application with just this dashboard component, our final schema would be

equivalent to the above and we'd be able to add or remove blog posts (storing only the title,

since the component doesn't need other information). To make it useful, we'd need to add an

editor.

Editor

A simple editor deals with a document, so the editor's component specifies this requirement by

saying:

type Document {
 title: String
 createdAt: DateTime
 id: ID! @isUnique
 updatedAt: DateTime
}

If configured to, it can also extend a host component's type with a relation to the document:

extend type HostComponentType {
 document: Document @relation
}

Where, in our scientific blog application, the HostComponentType is somehow either inferred or

configured to be BlogPost. You could literally drag the Editor onto the Dashboard (or perhaps a

job for pubsweet-cli), to signify Dashboard(Editor) , and the Dashboard's type would be extended,

in addition to the following client-side routes being automatically generated:

/dashboard
/dashboard/:blogPostId/editor

Now we need to display these posts to complete the blog.

Blog landing page

The blog's blogroll or landing page needs a list of blog posts, same as the dashboard. Since the

blog landing page doesn't write to this table, if the schema doesn't already exist because of the

Dashboard and Editor component, that would mean that there isn't any component in the

application to populate it. We could still manually fill in the data (not through the application

layer, but through the database layer), so it's perhaps not a reason to error, but a warning is

warranted ("Component BlogLandingPage depends on a schema that doesn't exist. Creating

missing schema.").

type BlogPost {
 title: String
 createdAt: DateTime
 id: ID! @isUnique
 updatedAt: DateTime
 document: Document @relation
}

Notice how it expects the document field too, which comes from the Editor's schema. This

means that the Blog landing page component will give a warning, if either the Dashboard or

Editor component is missing. It should be noted that both Dashboard and Editor components

would also raise a warning about missing schema dependencies, but the developer would

understand the meaning of it as a mere notice, since those two components are meant to

create schemas. We could potentially be more strict and express the schema needs of this

component, and bail/error if they aren't met (but that prevents using the component with

manually filling data on the database layer).

Given a good admin interface (separate db layer, Graph.cool example), it's not hard to imagine a

situation where someone merely uses the blog landing page component and manages the

data (copying and pasting data) in the admin interface (and not in the application layer's

dashboard and editor).

And now we have a blog. It has a clear data model and all of the above components can be

used in isolation, but they can behave differently depending on wired up to other components.

Let's look at the final example: What if we want to add comments to the blog?

Comments

A comments component wants a table to store comments:

type Comment {
 title: String
 createdAt: DateTime
 id: ID! @isUnique
 updatedAt: DateTime
}

Additionally and optionally, it wants to extend the schema of a HostComponentType (adding to it a

list of comments):

extend type HostComponentType {
 comments: [Comment] @relation
}

Adding comments to a blog can then be as simple as connecting it with the blog landing page

component, signifying BlogLandingPage(Comments) .

F. Utilize GraphQL for API queries

You may have noticed that the above descriptions for extending models are GraphQL schemas

with minor additions (such as the extend syntax). I put those in there deliberately because I

believe we should consider including GraphQL in PubSweet 2.0. Leveraging GraphQL would

mean we could provide all of the necessary API capabilities to create, read, update and delete

component defined models through a single endpoint -- i.e. it wouldn't cause an explosion of

the number of API endpoints. Additionally, this single endpoint is incredibly flexible and things

like filtering for a specific view, and getting only the minimum required data, are supported out

of the box.

5. Suggested roadmap
The following is a very brief outline for a possible PubSweet 2.0 roadmap. This is a pretty rough

outline because I expect it to be shaped by your comments and our conversations, but I’ve

broken it down into logical order. Developers should not need to modify existing component

code when upgrading unless they wish to leverage new functionality (e.g. extend the models

with component code, or use GraphQL queries) since we will maintain the existing API and

there are no major required changes to how PubSweet 1.0 components interact with a

PubSweet 1.x or 2.0 system.

1.1 Simplify Project Structure (if necessary)

1.2 Replace bespoke CLI code

1.3 Extend CLI

1.4 Replace bespoke ORM Code

1.5 Introduce component models

1.6 Implement GraphQL

1.7 Update CLI to meet the needs of 1.5 and 1.6

Being ambitious but relatively realistic, I’d like to see us arrive at PubSweet 2.0 within 4-6

months. This might be a useful scoping mechanism when planning the roadmap, as well as a

nudge for frequent reviews and community check-ins.

Of course, you may well have your own ideas that aren’t listed here, or have strong opinions

about the suggested approaches. We’d love to hear these and invite you to discuss them with

us. We’re active on the Coko Foundation Mattermost channel and there’s also a RFC issue

created in gitlab for discussion of your PubSweet 2.0 ideas and this document.

Let’s move forward together!

https://mattermost.coko.foundation/
https://gitlab.coko.foundation/pubsweet/pubsweet/issues/16
https://gitlab.coko.foundation/pubsweet/pubsweet/issues/16

