

INK 1.0 - Working Draft

Charlie Ablett, INK lead developer / architect

10 July 2017

This document describes current state of INK as of version 1.0 and describes the
second stage of our strategy.

Many thanks to everyone who has contributed to this document - Adam Hyde, Kristen
Ratan, Jure Triglav, Dr Craig.

INK inception 3

What INK does 4

INK terminology 5

INK 1.0 Features 6

How INK works 9
Architecture 9

INK API 10
INK Client 10

INK API components 11
INK Web 11

INK web architecture 11
Available steps 12

Events (Slanger) 12
Execution Engine 13

Execution Engine architecture 13
Combining parameters 14

Step Classes 15
Parameter handling 17
JSON manifest 17

File storage 18
Directory structure 18

The future of INK 20
Next Steps 20
INK Recipe/Step Author Community 21
Open for input 22

INK inception

 Adam Hyde got the idea for INK in 2015. In February 2016, we put our heads together
to discuss the idea, the challenges, identify some basic use cases and collaborate on
an initial architecture.

Development of a proof-of-concept prototype began shortly afterwards and the initial
architecture proved viable. Full-time development of INK 1.0 started in September
2016.

Early objectives included developing a framework with the following features::

- HTTP service API
- Basic web client
- Reusable �le conversion steps
- Ability to assemble arbitrary steps into a pipeline (recipe)
- Results of steps can be accessed through a user interface
- Develop a step-author community, and enable the community to share steps

and recipes easily

Initially INK development focused on �le conversions, which satis�es a simple but
useful use case. Once the capabilities of the framework were demonstrated, other
Coko products - Pubsweet and Editoria - began to use INK for �le conversion in early
2017.

INK development has since broadened considerably to include other use cases.

http://pubsweet.org/
https://editoria.pub/

What INK does
INK is intended for the automation of a lot of publishing tasks from �le conversion,
through to entity extraction, format validation, enrichment and more.

INK does this by enabling publishing sta� to set up and manage these processes
through an easy to use web interface and leveraging shared open source converters,
validators, extractors etc. In the INK world these individual converters/validators (etc)
are called ‘steps’. Steps can be chained together to form a ‘recipe’.

Documents can be run through steps and recipes either manually, or by connecting
INK to a platform (for example, a Manuscript Submission System). In the later case
�les can be sent to INK from the platform, processed by INK automatically, and sent
back to the original platform without the user doing anything but (perhaps) pushing a
button to initiate the process.

To illustrate this consider the case of a Microsoft Word �le being submitted by an
author to a Manuscript Submission System (MSS). If the MSS is connected to INK, the
Word �le could be sent to INK and a number of operations performed on that �le
automatically. For example, INK might convert the �le to PDF and HTML, it might
identify the abstract, methods, and results sections of the document and annotate
them accordingly, and �nally INK may identify the research subject area against the
publishers taxonomy and return all of this information back to the MSS in the form of
converted �les and metadata. All this without the author noticing except, if the MSS is
nicely integrated with INK, perhaps some of their submission information (eg subject
matter taxonomy) has already been automatically selected. This is just one simple
example of how INK can help publishers. There are many more examples and ideas
and we are working hard to meet these needs with INK!

For the more technically minded, INK is a standalone Ruby on Rails application with a
HTTP API for receiving �les and data and executing customizable actions on them. INK
steps (added as Ruby gems) can be created and assembled into larger recipe pipelines
through an intuitive user interface or an API. These steps can execute custom code in
multiple languages, execute system commands, or hit other APIs, and the output of
each step in a recipe can be easily inspected for debugging. Any set of steps and
recipes can be built or customized by any organization, and its modularity and
extensibility allow it to support a huge array of use cases.

INK is designed to be a community tool and anyone can build a step or construct a
recipe. As the community adopts INK, there will be a broad step library that will lower
the barrier to new uses of INK over time.

INK terminology
What INK does is simple to understand as described above, but how INK technically
achieves this is pretty complex. To further understand how INK works, let’s �rst take a
closer look at the INK lexicon.

INK
Ingest ‘n’ Konvert. An ETL (Extract, Transform, Load) tool developed by the
Collaborative Knowledge Foundation . It’s the software you’re reading about right now.

INK Instance
A copy of INK software running on a server. Many facets of an instance can be fully
customized to meet the needs of di�erent organizations and groups.

API
Application Program Interface . An interface provided by a software system for other
software systems (“ consumers ”) to communicate with. Generally not meant for
humans to use directly. Humans use a client - itself a consumer - with a User Interface
that translates user activities into API calls.

API Consumer
Software that communicates with an API. Generally, this means that when the API
Consumer makes a request to the API, the API ful�lls it and sends back payload. An
example of an API Consumer would be Editoria, xpub, or PubSweet .

Client
A user interface meant for use by publishing production sta�.

Rails
Ruby on Rails is a software framework for creating Web applications. Gems - external
modular libraries written in Ruby - can be loaded into Rails in any combination. INK
leverages this �exibility to allow a custom combination of gems in an INK instance.

Step Class
Sometimes we refer to a Step Class as just a step, or INK step
These are the reusable processes that perform operations on �les or content. They’re
written in the programming language Ruby.

Examples may include:

● “Translate an epub �le from Vietnamese to Norwegian using an external API”
● “Extract all the images in this document and make them all greyscale”
● “Convert an HTML �le into a PDF using Vivliostyle Electron ”

Step Gem

https://en.wikipedia.org/wiki/Extract%2C_transform%2C_load
http://coko.foundation/
https://en.wikipedia.org/wiki/Application_programming_interface
http://pubsweet.org/
https://www.npmjs.com/package/vivliostyle-electron

INK de�nes a Step Gem as a gem with a particular structure, which contains one or
more Step Classes in it. When a Step Gem is installed on an INK instance, the Step
Classes become available for users to use. Step Gems can be stored and run from INK
locally, or hosted on remote version control (e.g. Gitlab).

Recipe
A �le/content conversion pipeline. A recipe consists of one or more Recipe Steps in a
de�ned order.

Recipe Step
As part of a Recipe (a template), it knows its position and what Step Class supposed to
run when the time comes to execute.

Process Chain
When a Recipe gets executed, a Process Chain is created (with as many Process Steps
as needed). A Process Chain knows when it’s been executed, the input �les it’s been
given, and information that results from the Step Classes being run in the order
speci�ed by the Recipe .

Process Step
A Process Step is part of a Process Chain . Process Steps are copied from the template
Recipe Step upon execution. It stores the result of its associated Step Class execution.

Account
An entity representing a user or organisation in the INK system. An Account has login
credentials.

Admin
A type of Account with broader privileges and access than a non-admin Account. An
Admin Account may or may not be a system administrator so this distinction is made.

System Administrator
An IT person who has access to the server that INK is hosted on and manages it. They
would set up an INK instance, install step gems when needed, and monitor system
processes. System administrators may or may not have an INK Account.

Service
An Account may have up to one Service associated with it. A Service has a token,
which it can provide to the API for authentication.

INK 1.0 Features
INK has the following features as of 1.0:

Recipe management

● An Account can create a recipe or modify an existing one, specifying its name,
description and Step Classes in order.

● Recipes can be set as public or private. A private recipe can only be viewed and
executed by the account that created it. A public recipe can be viewed and
executed by anyone.

● An Account can set parameters for individual Recipe Steps.
● A Recipe can be archived if it’s no longer needed - past executions still be

viewed but not executed.

Recipe execution

● An Account or Service can execute a recipe with provided �le/s, and
parameters. Size and number of �les is limited by web server settings (e.g.
nginx max �le size) and system resources.

● Parameters are used to modify Step Class behaviour. One-o� parameters
provided at execution time for a Recipe Step override parameters with the
same name speci�ed in the Recipe Step.

● Step Classes can set parameters as required. If a required parameter is
missing, execution halts.

● An Account or Service can retry an execution without having to re-upload the
�le/s - INK will use the existing input �le/s and parameters they originally
provided.

● Execution requests can include a callback location. INK API will send the
payload to that callback location once the asynchronous execution process has
�nished.

● An Account or Service can see their past executed process chains (pipelines)
with results for each Process Step included - errors, notes, information (e.g.
step gem version, Step Class), and whether or not the Recipe Step considers
the execution to have been successful (which is generally up to the Recipe Step
itself, usually set to “true” unless an error was encountered).

● An Account or Service can access a log that is useful for debugging Process
Steps that have not performed as expected.

● An Account or Service can download �les associated with their own past
executed Process Chains. This includes input �les for the Process Chain itself
(what �le/s they originally provided) and output �les for each Process Step.

● An Account or Service can subscribe to process chain execution events to
provide real-time updates. Execution events are sent via the Pusher protocol to
subscribed listeners.

Authentication and accounts

● An Account can log in and perform subsequent requests with a
server-provided JSON Web Token (JWT) payload for authentication.

● An Account can have a Service associated, which can be given a token for it to
use rather than credentials. This is intended to allow non-user services (such as
Editoria) access to INK without the use of credentials.

● Authorisation: Accounts cannot access each other’s process chains, nor the
�les associated with other accounts’ process chains. A Service has access to the
Account’s assets for purposes of authorisation.

● An admin Account can see a list of accounts and services.

Server administration

● An Account can be have the role Admin, which allows access to speci�c
information.

● A system administrator can customise which step gems INK loads and makes
available for execution.

● An admin Account can see a list of these Step Classes, listed by gem, that INK
has loaded.

● An admin Account can see the status of essential components used by INK (e.g.
execution engine) to quickly determine if any of them need attention.

● An admin Account can monitor the execution engine to check for fatal errors or
failed process chain executions.

Step authorship

● Step Classes contain custom behavior.
● Step Classes can include default parameters (which can be overridden by

parameters supplied as part of a Recipe, or at runtime).
● Basic support methods are available for Step Class authors to use.
● All Step Classes subclass the InkStep::Base class (found in the ink-step gem)

which provides methods such as working_directory .

INK API is thoroughly tested with unit, controller and integration tests using the Rspec
framework.

https://gitlab.coko.foundation/INK/ink-step/blob/master/lib/ink_step/base.rb
https://gitlab.coko.foundation/INK/ink-step

How INK works
The following pages detail the INK architecture and how it works.

Architecture

INK is composed of several parts as illustrated below. Each of these elements is
described in detail throughout the rest of this document.

INK API

The INK API is the endpoint for third-party services. It’s not meant for
users to use directly (that would entail very long curl commands!). It’s
more likely that the user is logged into Editoria or PubSweet and that
service uses INK behind the scenes. Most users who use those
third-party services won’t realize they are using INK at all.

INK Client

Users, such as publishing production sta�, who want to interact with
INK directly use the INK Client user interface. The INK Client is written in
React.js , using Redux . It’s built with Webpack . INK Client calls the INK
API and is useful for both demonstrating INK API features and as a basic
administrative interface.

Using an event subscription model, live updates are sent from the API to the client for
real-time updates on INK processes.

https://facebook.github.io/react/
http://redux.js.org/
https://webpack.js.org/

INK API components

INK API comprises of several parts. Let’s break these down and take a closer look at
each.

INK Web

INK Web is written in Ruby using Rails 5 as an API with a simple object
model and no views nor assets. It responds to and delegates API
requests, manages the connection to the database, persists objects and
retrieves �les when users wish to download them. Devise is used for
authentication, which is done via JSON Web Tokens (JWT) .

File storage is decoupled from INK Web and can be o�oaded to a separate server if
desired (e.g. S3).

INK web architecture
The object model for INK Web is indicated below. The objects with solid borders in
this diagram are persisted to the database. The dashed objects are not. Structural
associations are indicated with solid lines. Multiplicity is shown between objects:
one-to-one and one-to-many.

https://www.ruby-lang.org/en/
http://rubyonrails.org/
https://github.com/plataformatec/devise
https://jwt.io/

Available steps

INK Web dynamically �nds Step Classes available upon Recipe creation or execution.
The Step Class must ful�ll the following criteria to be dynamically loaded:

● It’s included in a gem which is installed on the INK instance (included in the
installed bundle when the Rails server started)

● Its name ends with Step
● The gem has a structure that INK Web expects and is in the expected directory
● It’s a subclass of InkStep::Base

Events (Slanger)

INK API uses Slanger (open source event service that uses the Pusher
protocol) for handling events. API consumers subscribe to Slanger
channels for real time updates of Recipe execution. As the asynchronous
process progresses, and the INK Client updates the user in real time.

The events are:

Process Chain started

Process Step 1 started
Process Step 1 completed

Process Step 2 started
Process Step 2 completed
...
Process Step n started
Process Step n completed

Process Chain completed

https://github.com/stevegraham/slanger
https://pusher.com/docs/pusher_protocol
https://pusher.com/docs/pusher_protocol

Execution Engine
The INK Execution Engine uses Sidekiq ’s multithreaded Worker
asynchronous processes to do the heavy lifting. The Execution Engine
can be hosted on a separate dedicated asynchronous job server if
required.

When an INK Recipe is executed, the Execution Engine starts an

asynchronous worker process (ExecutionWorker). The worker process starts a
RecipeExecutionRunner that iterates through each Step (Step Class). Each Step is
given its own working directory and any parameters sent by the request. Then, it
executes the code inside the perform_step method.

Execution Engine architecture
The following shows an abridged object model of INK Web as it interfaces with the
Step Classes and Execution Engine.

http://sidekiq.org/

Combining parameters
Parameters can be speci�ed at one of three levels.

Step Class level
A Step Class author may specify some default parameter. Unless it’s overridden, the
step will use that default.

Recipe Step level
A Recipe author may specify some default parameters for each Recipe Step. These
parameters may override any of the same name from the Step Class level.

Execution level (runtime)
When an execution call is made to the API, parameters can be included. These
parameters will override any of the same name from the Recipe Step and may
override on the Step Class level (it depends on how the Step Class handles them).

The above illustrates an example of parameter overriding.

● PandocConversionStep is shown as de�ning two parameter values for
input_format and output_format (these lines).

● The input_format value will be overridden by the value given to the Process
Step (“epub”). Since the output_format value isn’t there,
PandocConversionStep ’s value for output_format , “icml” , remains
unchanged.

● As we move on to RecipeExecutionRunner’s runtime execution parameters, the
input_format ‘s value of “epub” is kept (as it’s identical) and the
output_format value “icml” overrides. As excitement_level is new, it’s
added. For extra excitement.

In the example shown above, the �nal parameter set used by the
PandocConversionStep for this Process Step at runtime would be:

Parameters {
 input_format: “epub”,
 output_format: “icml”,
 excitement_level: 11
}

https://gitlab.coko.foundation/INK/inkstep_coko_conversion/blob/428bb636602da468c56d5cdad55329ef4aaa3768/lib/coko_conversion/ink_step/pandoc_conversion_step.rb#L11

Step Classes

A step class de�nes some sort of behavior that is carried out against
�le/s or content. Step Classes can be written by anyone and can be
hosted locally, on a git instance or on rubygems.org .

Each Step Class has a version which is set either at the gem or step level.

Below are a sample of the Step Classes written by CoKo:

InkStep::PandocConversionStep
Takes parameters input_format and output_format to execute a Pandoc
conversion (InkStep::PandocDocxToHtmlStep subclasses it and overrides the
parameters on this line).

InkStep::VivliostyleHtmlToPDFStep
Converts a HTML �le to PDF (no parameters)

InkStep::XsweetPipeline::DownloadAndExecuteXslViaSaxon
The Editoria pipeline steps are all subclassed from this one. The step author speci�es
a URL, the step downloads the XSL �le from that location and applies it to a HTML �le
using Saxon .

InkStep::RotThirteenStep
A demonstration step that applies a basic cypher to text

InkStep::ShoutifierStep
A demonstration step that transforms all text in a plaintext document to uppercase. It
accepts a parameter called punctuation - if set, any full stops (periods) are set to
that value. If not, it defaults to !!!

Here’s a selection of what step classes can do, with some examples of each:

File conversion

docx => html
epub => pdf

Validation
Is this HTML 5 document valid?
Detect grammar errors

Enrichment
Adding contextual annotation

Entity Extraction
Extracting all the images in a document
Compiling a list of places in a document and mapping them

https://rubygems.org/
https://gitlab.coko.foundation/INK/inkstep_coko_conversion/blob/428bb636602da468c56d5cdad55329ef4aaa3768/lib/coko_conversion/ink_step/pandoc_conversion_step.rb
https://gitlab.coko.foundation/INK/inkstep_coko_conversion/blob/428bb636602da468c56d5cdad55329ef4aaa3768/lib/coko_conversion/ink_step/pandoc_docx_to_html_step.rb
https://gitlab.coko.foundation/INK/inkstep_coko_conversion/blob/428bb636602da468c56d5cdad55329ef4aaa3768/lib/coko_conversion/ink_step/pandoc_docx_to_html_step.rb#L9
https://gitlab.coko.foundation/INK/inkstep_coko_conversion/blob/428bb636602da468c56d5cdad55329ef4aaa3768/lib/coko_conversion/ink_step/vivliostyle_html_to_pdf_step.rb
https://gitlab.coko.foundation/INK/inkstep_coko_conversion/blob/428bb636602da468c56d5cdad55329ef4aaa3768/lib/coko_conversion/ink_step/xsweet_pipeline/download_and_execute_xsl_via_saxon.rb
http://saxon.sourceforge.net/
https://gitlab.coko.foundation/INK/inkstep_coko_demo_steps/blob/master/lib/coko_demo_steps/ink_step/rot_thirteen_step.rb
https://gitlab.coko.foundation/INK/inkstep_coko_demo_steps/blob/master/lib/coko_demo_steps/ink_step/shoutifier_step.rb

Content Transformation
Translation

Metadata management
Reading metadata
Adding authors to metadata

Analysis
Detecting widows and orphans
Characterisation via JHOVE

Distribution
Uploading to another server
Publishing to WordPress

There are many di�erent things that a step could do. Here are some samples, and as
our partners and community brings more use cases, the selection of available step
classes will keep growing.

INK step classes are designed to be �le- and content-centric (which could come from a
URL, for example). Examples of step class behaviors which INK steps are not really
designed to handle:

● Noti�cations - e.g. Mattermost, HipChat, SMS - should be handled by the API
consumer

● User interaction (terminal or via graphical interface)
● Excessive use of system resources
● System calls that could potentially destabilise the server (e.g. sudo shutdown

now)

Step authors are free to write a step that does one of the above, but we don’t
recommend it.

It’s also important to note that Step Classes can comprise of any code the Step
authors wish to write. Generally, we imagine each Step to do 1 thing and do it well as
this makes Steps clean and neat and expands the possibilities for reuse. However,
there may be any amount of complexity and/or conditional logic in any Step Class.

https://en.wikipedia.org/wiki/Widows_and_orphans
http://jhove.sourceforge.net/

Parameter handling

A step class can do anything to a �le. The �gure below describes
InkStep::ShoutifierStep in action, feeding the same �le into the same step with
di�erent parameters:

JSON manifest

When a Step Class has �nished, a JSON �le manifest is collected from the contents of
the Process Step’s working directory and made available to others. It details which
�les are in the directory and generates a checksum for each. A semantic tag is added
to each, :new , :identical or :modified . This information can provide a
longitudinal overview of the processing done by the entire Recipe.

[
 {
 path: "important_document.html",
 size: "2.8 kB",
 checksum: "111017ee94636df62daa98257cc1bfeb",
 tag: :new
 }
]

File storage

File storage is an integral part of INK. Like a lot of INK, the location is
customizable - �les can be hosted on the cloud (e.g. S3), another server
on the network or the local �lesystem.

Directory structure

We use the shorthand $INK_FILES to reference the location where an INK instance
stores its �les. It will be di�erent on every INK instance.

When an execution is initiated, INK clones the Recipe into a new Process Chain. The
new Process Chain has a unique slug (e.g. 12345abcd) that is used to identify its
location in the $INK_FILES directory. A directory called input_files is created,
along with a directory corresponding to the position of each Process Step (1 to n). See
the directory structure following:

Once the �le structure is ready, the �les provided by the user are placed into
input_files . Before each Step Class executes, INK copies the �les from the previous
step directory (or input_files if it’s the �rst) and the Step Class runs its code against
the �les in its directory.

This structure means that while there is some duplication of unchanged �les, the
result of each step is preserved. This is extremely useful for posterity and debugging
purposes, especially for publishing production sta� troubleshooting or improving
their recipes or steps.

In addition to the �les written by the Step Class, INK also includes a log�le which also
be helpful for debugging. It is downloadable by end users.

The future of INK

INK 1.0 presents a solid core. While we could continue adding features to INK ad
in�nitum, instead (with the exception of Step Modes and some admin tools - both
described below) we’re going to switch focus to building Steps to perform various
tasks for publishers. This is because INK 1.0 is already more powerful than we require
for most of the work Coko is currently involved with and turning to Step production
will help us improve the Step Class developer experience and also understand what
features to consider for INK 2.0. We hope there will be others joining us in building a
Step library for publishing since INK is most successful when a centerpiece of a
thriving community working together to solve shared needs.

Next Steps

Here’s what we’re considering for the next phase of INK.

More steps!
We aim to cover more use cases and get some more useful steps into the wild. Here
are the ones we’ve got on the immediate horizon:

● Utility steps
○ Zip/tar into an archive (or unzip/untar)
○ Third-party API call
○ Collect all modi�ed �les from previous steps
○ Email all �les
○ Download a �le from a URI
○ SFTP �les to external store
○ Generic terminal command

● Generic Steps - These steps represent a wide variety of �le conversion tools
that can manage multiple type of conversions and validations. These steps will
invoke a command and pass on any parameters to ful�l various
conversions/validations etc.

○ Calibre
○ Mogrify (batch image processing)
○ Convert (Imagemagik command)
○ HTMLTidy
○ PDFTKF
○ Vivliostyle
○ Pandoc
○ WKHTMLTOPDF

● HTML Validation
● JATS Validation
● Plagiarism checks

● Interpolation of document structure and extraction/annotation of parts
(Abstract, methods, results etc)

● Subject matter taxonomy identi�cation
● Image extraction
● DOI Assignment and registration
● EpubCheck (being written by Richard Smith-Unna)
● Natural Language Processing to identify authors, title, institution names, etc in

an academic paper
● Identify place names in a document
● Identify people names in a document
● Convert HTML body to JATS
● Create valid JATS metadata
● Merge JATS body and metadata
● Syndicate content to various services
● Push to Continuum

Account management
Allow Admin accounts to create, remove, and modify Account and Services
Allow

Step Class parameter modes
We’re exploring a “parameter modes” feature for Step Classes. If a Step Class has
parameters, it might be useful for a Step Author to de�ne some presets. For example,
a PandocStep might have a parameter mode DocxToHtml which would automatically
mean parameters: {input_format: “html”, output_format: “docx”} . We
hope that this will help Step Classes be more usable by non-developers.

INK Recipe/Step Author Community
As INK has reached a point where it’s ready for others to contribute step classes and
recipes, we’ll be focusing on forming a community around creating and sharing
Recipes and Steps. We’ll also focus on improving the experience of both developers
and non-developers, so that more people can contribute to, and bene�t from, INK. To
this end, here are some upcoming improvements:

Step Class development tools
Enable non-developers to participate in creating INK steps by providing a utility to
write and test Step Class code in the browser - no installations required.

Step workshops
Coko plans to host Step authoring workshops.

INK Website
A dedicated web presence for INK which would host documentation, Step Class
Authoring Guide , and other useful information for getting the most out of INK and
writing e�ective Step Classes.

Open for input
It’s important that INK delivers value and frees up time from time-consuming,
automatable tasks. Please let us know if there are any suggested improvements to the
framework or existing steps.

