The Cabbage
Tree Method

Open Source Collaborative Product Development

The
Cabbage Iree
Method

Open Source Collaborative Product Development

\\|/7 Collaborative
SHUTTLEWORTH N/ Knowledge
OOOOOOOOOO /XS Foundation

This book versionis 0.1

Table of contents

Introduction

Thoughts about Open Source

What is the Cabbage Tree Method? 11
Getting Started
The Set Up 18
Design
The Design Session 23
Effectively Facilitating the Design Sessions

32
Build
The Build Period 37
Facilitating the Build Period 43
Onwards
Adoption and Diffusion 47
Things to Think About
Lets be Friendly Y
Cabbage Tree Open Source 56
Colophon 58

QOHL3IW 3341 30VE49V0 IHL

Introduction

A\

//7/‘

A Tl

This book evolved from a need to choose or design a development
methodology for the Collaborative Knowledge Foundation (Coko)
which I co-founded with Kristen Ratan. Coko aims to reform schol-
arly publishing with modern HTML-first workflows, and we build
open source tools to assist this goal. There are many development
methodologies available, but I have found many of them unsatisfy-
ing. What I was missing was something that articulates many of the
principles of the Agile Manifesto and Kent Beck's Extreme Program-
ming methodology but applicable to open source culture. Essentially

these two, and other, forces at play within the history of Systems De-
velop Life Cycles, branch away from the top-down design and devel-
opment methods that preceded them.

However, while I see these kinds of ideas as potentially transforma-
tive, I haven't seen them well executed, nor does it seem to me that
they have really changed open source processes all that much.

On reflection, open source itself seems to be a "culture method" all of
its own. That culture is based largely on the idea of developers hav-
ing their own itch to scratch, as expounded by Eric Raymond, and
sits on its own branch of the SDLC tree. While open source is, in a
sense, a radical proposition in itself, open source also seems oddly
unaffected by some of interesting changes occurring in the propri-
etary software world.

At the same time, and from a completely different sector, I have been
inspired by John Abele. For me, this is an unusual source of inspira-
tion. John focuses on the development of proprietary hardware tools
for the medical sector. Yet he's a generous mind and has written a lot
about the collaborative design of surgical instruments in the 1960s
and how collaboration itself, involving the end user, is the key to
overcoming a hostile market. John and his colleagues successfully
championed the introduction of non-invasive surgical techniques at
a time when surgery meant cutting. His ideas fascinate me and I
mined the discussions we had for clues about how open source could
leverage the techniques John expounded.

On further reflection, all this searching was, in a way, a little ridicu-
lous since it led me full circle, back to my roots. I realised that the
two critical ingredients required to enable the production of market-
beating open source products were I) the involvement of the people
who needed the product in the design process, and 2) the effective
facilitation of the design process. It was full circle because this is ex-
actly what I'd been doing for the previous eight years — but with
books, not software. From 2007, I had been trying to work out how to
produce books quickly (initially for the production of free manuals
about free software) and through many dead-end, frustrating explo-
rations over a period of four years, I developed and refined the Book
Sprints Methodology. With Book Sprints, the idea is to facilitate the
people who need a book to collaboratively write it themselves. When

NOILONQOYLNI

QOHL3IW 3341 30VE49V0 IHL

I understood this framing of Book Sprints and how it tied into both
John's ideas and software development, everything started to fall
into place.

The next step for me was to work out how this approach could be ap-
plied sensitively within open source culture, or more specifically,
within the Collaborative Knowledge Foundation. That was largely a
process of mapping what I knew from Book Sprints to what I knew
of software development. It's strange that the solution for my prob-
lem resided in allowing two parts of my brain to cross pollinate —
opening up previously firewalled learnings and letting them talk to
each other. Since I knew from experience the dynamics of creating a
method, I wrote out the method rather quickly at this point. I already
knew that methodologies result from making assumptions and then
holding your breath and trying them out in the real world. So that's
what I did. Thankfully, I had others who held their breath with me,
most notably and thankfully Kristen Ratan to whom I'll be forever
grateful for her insights and trust and patience with me, and Karien
and Helen from the Shuttleworth Foundation, and all of the gener-
ous Shuttleworth Fellows, who listened to me bang out the rudimen-
tary ideas and offered insightful critiques and expansions.

I've now tested out the process and I'm extremely happy with how it
works. It's still in need of more real world scenarios, as more testing
strengthens any methodology. And that's why you are reading this
now. I hope you'ill read this book, think about it, and try out the
method I describe on these pages. The more people who try this, the
faster we can learn from each other. If you do choose this path, I
hope that together we'll transform open source and make it into the
world-beating producer of user facing products that it should be.

adam@coko.foundation

How this Book Was Written

I fleshed out the concept of the Cabbage Tree Method over a number
of weeks and then months as I tried it out, posting to my blog as I
went along. During that time, I received valuable feedback and in-
sights from Kristen Ratan and many of my fellow Fellows at the
Shuttleworth Foundation as well as the Foundation's staff, mainly

mailto:adam@coko.foundation

Arthur Attwell, Seamus Kraft, Steve Song, Andrew Rens, Ryan
George, Helen Turvey, and Karien Bezuidenhout. Also, as always, I
got amazing feedback, support, and mentorship from Allen Gunn
(Gunner). It is worth noting that Gunner has developed similar
methodologies and his organisation — Aspiration — is an invalu-
able source for information, experience, and wisdom on these topics.

I also learned a lot from the Coko team who were participants in the
development of products using this method, including the talented
trio of Yannis Barlas, Christos Koksias, and Julien Taquet who bore
the brunt of it, as well as Alex Theg, Jure Triglav, Charlie Ablett, and
Wendell Piez. Others also provided great feedback including Micz
Flor, Eleni Michaelidi, and Nicole Martinelli.

The good people at the University of California Press and California
Digital Library were also the first case use specialists to go through a
full Cabbage Tree Method cycle. Many thanks to Erich van Rijn,
Catherine Mitchell and Justin Gonder, and especially thank you to
Kate Warne and Cindy Fulton for bringing use case expertise and
generous spirits to the table.

I then compiled some of these posts into this book and asked Scott
Nesbitt and Pepper Curry (illustrations) to help improve it. Raewyn
Whyte then cleaned it up, making it proper grammar, and Julien
Taquet made a book out of it!

I highly recommend the skills of Pepper, Raewyn, Scott, and Julien if
you wish to produce a book of your own.

Finally, I am so very grateful to the Shuttleworth Foundation for
choosing me as a fellow. Without their support, Coko, this method,
and this book, would not have been possible. Due to the open and
supportive environment the Shuttleworth Foundation works hard to
create I have had the freedom to express my own views. It follows
that the views expressed in this book do not necessarily reflect those
of the Shuttleworth Foundation.

NOILONQOYLNI

QOHL3IW 3341 30VE49V0 IHL

Thoughts About Open Source

Open source is broken. More precisely, it's partially broken. One part
of the open source development model works very well, but the
other part is failing users.

The part that works is where the famous 'itch to scratch' model
comes into play. If a developer has a problem that they can fix with
some new code, then they're in a good position to do just that. How-
ever, while writing code is a necessary condition for creating soft-
ware, it's not the critical reason this model works. The critical reason
is that, in these cases, the developer is the user. The developer under-
stands the problem in depth because it's their problem.

But outside of developers solving their own problems, open source
has largely failed users. There are few user-facing open source solu-
tions that can beat their proprietary rivals in terms of approach, util-
ity, and usability. I count Unity, GitLab, and Mattermost amongst
those few. But there should be many more. Why is it this way? It’s
because we've incorrectly concluded that the ability to develop soft-
ware is the same as the ability to solve any problem that involves
software.

Understanding the problem, developing an approach to a solution,
and developing software, are three very different skills. Open source
culture has not, by and large, recognised the differences between

those three skills. Instead, we've conflated those skills into one: the
ability to develop software.

We need to move beyond that way of thinking.

By focusing too heavily on developing software, we've forgotten that
"developing software" isn’t what we're doing. We're actually trying to
solve a problem for someone. And that someone is often not a devel-
oper. That someone is usually the person who will use the software;
and software, open or closed, is useless if it doesn't address that per-
son’s problem. Hence the primary goal of open source is to solve
problems, not create code, even though software is the dominant
means to get there.

That key idea has gotten lost over the years. It’s led to a very devel-
oper-centric culture that sees all problems as issues developers
haven'’t yet tackled. It's led to an over-reliance on technical thinking.
It’s led to a lack of cultural diversity that doesn't reflect the back-
grounds of the people using the software, and which can lead to poor
assumptions and bad solutions. It’s led to a lack of diversity in the
roles within open source projects and the power imbalance that ac-
companies this. It’s led to a lack of understanding of the wider issues
of empowerment. Most of all, it's led to the marginalisation of
skilled people who are not developers and to the marginalisation of
the people whose problems open source is trying to solve.

We need to change this situation, and we need to change it now.

What can we do? The answer is simple: always have the people with
the problem at the heart of an open source project. We need to re-
member that the real strength of open source is the insights that the
user brings to a problem, insights that no one else has.

While the answer is simple, its implications are huge. Those implica-
tions include diversifying participation, making users central to the
project, tearing down technical meritocracy as the single determi-
nant of value, and experimenting with new models of open source
culture.

304N0S N340 LN0AY SLHONOHL

QOHL3IW 3341 30VE49V0 IHL

10

This is why I developed the Cabbage Tree Method. The Cabbage Tree
Method advocates, by example, for a fresh approach to how open
source projects are created, constituted, and run. I very much believe
that the Cabbage Tree Method isn't just a design methodology: it's a
template for a different model of organising open source projects. A
model that, at its core, requires and promotes a more inclusive cul-
ture.

What Is the Cabbage Tree Method?

Imagine a bunch of people in a room, all sitting around a table. There
are some whiteboards in the room, and coffee, sticky notes, and
maybe even a data projector, litter a table. All of those people, except
one, share a common problem and they want to create new software
to solve it.

But where do they start? There are no developers here ... what's go-
ing on? One of them, the facilitator, steps up and initiates a short pe-
riod of introductions and then asks the question "What is the prob-
lem?"

From this, a process unfolds where the people who need this new
software (let's call them the use case specialists) explain all their frus-
trations with the ways things are done now and what could be better.
It is a wide-ranging discussion and everyone is involved. At the facil-
itator's prompting, someone jumps up and draws a straggly diagram
of a workflow on one of the whiteboards to get their point across.
Another pipes up to add nuance to one part of the diagram because
they fear the point wasn't adequately understood. There are some
quiet moments, some discussion, lots of laughter, a break for lunch.
Plenty of coffee.

Throughout the day, the group somehow (the facilitator knows ex-
actly how) evolves their discussion from big picture problems and
ideas to a moment where they are ready to start designing some so-
lution proposals. The facilitator breaks them into small groups and
each group has 45 minutes to come up with a solution. When they
come back, each group presents their ideas. Some of the ideas are
very conceptual, almost poetic. Other ideas are very concrete and di-
agrammatic. Everyone thinks carefully about the merits of each pro-
posal and what it is trying to say. Discussion ensues. Members of the
group ask clarifying questions. After all the proposals are made, they
decide on an approach.

In a short time, they have agreed on a set of requirements for soft-
ware that they have consensus on and all believe will solve (at least
some of) their problems. They take photos of all the whiteboard dia-

304N0S N340 LN0AY SLHONOHL

11

QOHL3IW 3341 30VE49V0 IHL

12

grams and document the design agreements thoroughly, creating a
Design Brief. At the end of the day, they walk out the door and the
Design Session is over.

The next day the build team, featuring user interface (UI), user expe-
rience (UX), and code specialists, looks over the documentation with
the facilitator through remote conferencing. They discuss the brief,
what is clearly defined and what is still to be defined. They work
through the issues together, jamming out approaches to open-ended
questions which are both technical and feature-focused. The session
is not long, perhaps two hours. It's a lot of fun. From this session, the
Design Brief is updated with the decisions. Many technical solutions
are left wide open for the code specialists to think through and solve
over the next weeks. However, the code specialists can, and do, start
work immediately, though the UX specialists add mockups to the
documents over the next days. The team works things out on the fly
where necessary and gets onto it. Over the next weeks, a few ques-
tions to the use case specialists surface — these are either asked di-
rectly or through the facilitator.

The use case specialists reconvene six weeks later with the facilitator
and are presented with the working code that has been created by
the build team over that period. Everyone is amazed. It's just as they
imagined, only better! After seeing the working code, they each have
further, exciting, insights into how this problem might be solved.
The facilitator steps up and they go through it all again to design the
next part of the solution. Everyone is bursting to have their say.

The design-build cycle is repeated until they are done and the soft-
ware is in production.

This is the Cabbage Tree Method.

The Cabbage Tree Method (CTM, for short) is a new way to create
open source software products. With CTM, the people who will use
the software drive its design and development under the guidance of
a facilitator. It's a strongly-facilitated method that generates and re-
quires immersive collaboration.

You can think of CTM as a new branch on the Systems Development
Life Cycle (SDLC for short) tree. Some popular SDLC methods in-

clude Spiral, Joint Application Design, Xtreme Programming, and
Scrum (some of which conform to the values of the Agile Manifesto
— see http://agilemanifesto.org/ for details).

Unlike the various SDLC methods, CTM is specifically aimed at the
free software/open source sector. In that sector, the cultural rules are
quite different from environments where teams are employed to
work within a more formal business or corporate structure. How-
ever, CTM differs from open source processes that have embraced
developer-centric solution models, thanks to its focus on users de-
signing the software with a facilitator as an enabling agent.

What also sets CTM apart from other methods of developing soft-
ware, is that it doesn't have:

— personas

— avatars

- user validations

— user stories

- empathy boards (etc)

— 'experts' designing the solution for the user
This process isn't about development procedures that represent the
user at a distance. It's about communicating and collaborating with
the user at the centre of the process. It's not a question of profiling a
so-called user, or turning them into an avatar or proposition, or try-
ing to generate empathy with them from afar. Rather, a core require-
ment of CTM is to directly involve in the design process everyone

who will use the system. The idea is that if you want to know what
the user wants, don't imagine their response. Ask them.

(QOHLIN 3341 39vAaVD IHL SI LYHM

13

f The Cycles of CTM

Like most modern SDLC methods, CTM is iterative and has clear cy-
cles. Each cycle consists of a Design Session followed immediately by
a Build Period. These cycles repeat (design, build, design, build, de-
sign, build etc) until the solution is complete.

Design Sessions

The specialists most in demand for the Design Sessions are the use
case specialists — the users themselves. The Design Sessions are al-
ways conducted in person — they don't work well with remote par-
ticipation. Each Design Session can be as short as two hours, or as
long as one day.

The general principle of the Design Sessions is that all users affected
by the software must be present at the appropriate moment - either
in total or as a representative group. Without their presence, a solu-
tion cannot be developed. A fundamental rule of CTM is that no one
speaks for the users other than the users themselves.

From each Design Session, a short brief is created that describes
what has been agreed to, what is absolutely required to be done in
the following build period, and what is left to be solved during the
build period.

Build Period

The build period takes place immediately after the Design Sessions.
The build period can occur remotely and may take two to eight
weeks, perhaps longer. Building is the job of the UI/UX and code spe-
cialists and it is here they can both be creative and exercise their
User Interface (UI for short) / User Experience (UX) and program-
ming skills. Use case specialists don't participate in the build period
but may be consulted for clarification during this period.

Before the build period begins, each of the build team members re-
ceives for consideration the initial brief that was created during the
Design Session. The build period then begins with a meeting where
the code and UI/UX specialists discuss the brief, decide on an ap-
proach, and together develop solutions for any outstanding issues.
This may include solving some complex feature, technical, and us-
ability problems — essentially working out how to achieve every-
thing the users have already decided, plus designing what is left over.

(QOHLIN 3341 39vAaVD IHL SI LYHM

15

QOHL3IW 3341 30VE49V0 IHL

16

Then briefs are written and agreed upon, mocks done where neces-
sary, and building begins.

Getting Started

QOHL3IW 3341 30VE49V0 IHL

18

The Set Up

Before you can start using the Cabbage Tree Method to develop your
solution, you'll need:

- aproblem that needs to be solved
- afacilitator

- stakeholder commitment

- avenue for the Design Sessions

- agoal

- user interface/user experience and code specialists

The Problem

The people with the problem (the use case specialists) should voice
the problem. You can't, and shouldn't, imagine problems for them.
The initial articulation of the problem space is really the starting
point for the process. The facilitator will need to work with the group
to get a more accurate understanding of the problem at hand. It
should be as detailed as possible and clearly documented.

The Facilitator

Central to this process is the facilitator. There are many models for
facilitation and still more that call themselves facilitation. The facili-
tator is not the Benevolent Dictator For Life, a cat herder, nor a Com-
munity Manager as commonly found in the open source world. The
CTM model facilitator is closer to an unconference-style facilitator,
expert in managing power dynamics on the fly and enabling people
to converse and work together in a very collaborative and egalitarian
way.

However, a CTM facilitator is not an unconference facilitator. A CTM
facilitator is someone who uses unconference tools to manage dy-
namics, but who must also be able to drive people through the CTM
method to specific, clear end points. These two aspects of the job
don't always come together. Don't assume that an unconference fa-
cilitator can perform this role.

Stakeholder Commitment

You need the commitment from the people who will use the system
— these are your primary stakeholders, your use case specialists.
They'll design the software, so its success will be a direct result of
their participation. If an important stakeholder is missing, then you
can't design for them. You need to make sure you have everyone af-
fected by the system present and that they're committed to this
process.

dn 13s 3HL

19

QOHL3IW 3341 30VE49V0 IHL

20

A Venue

A good venue, at a minimum, is a space with just enough room for a
table and enough chairs to seat everyone. A long whiteboard wall is
good to have but you can substitute large pieces of paper (like flip
charts) if no whiteboards are available. The ideal venue would have
breakout spaces and fresh air. If you're working with a single organi-
sation, then it's good to have the sessions in rooms connected to, or a
part of, this organisation's workspace. This enables them to demon-
strate in-house legacy tools or their current workflow, if necessary.
Coffee and food are always important to have at hand.

A Goal

The stakeholders need to articulate a clear goal. That goal could be as
straightforward as stating We need to replace our existing system with X. It
doesn't need to be much more detailed than that. You can determine
the scope of X in the first Design Session.

User Interface and Code Specialists

While you could try developing software without UI/UX and code
specialists — I've done it many times when I had no money to hire
specialists — you won't end up with a good product. UI/UX and code
specialists add a lot of value when you reach CTM's Build Period.

dn 13s 3HL

21

Design

The Design Session

All Design Sessions follow the same basic pattern, but the first ses-
sion needs to cover a lot of ground that is not repeated in subsequent
sessions.

The basic structure for every Design Session is:
- where are we now? (review where the group is now)

- where are we going? (consider options on what a solution
might look like)

- how do we get there? (design the solution)

During the first Design Session, the group needs to spend a lot of
time detailing what the current issues are, how they think those is-
sues could be solved, and evolving a final high-level approach to re-
solving those issues. Subsequent Design Sessions then break off a
part of this higher level approach and design a solution for each
piece of the problem, one piece at a time.

NOIS3d

23

QOHL3IW 3341 30VE49V0 IHL

24

Since the first Design Session is, as we say in New Zealand, 'the same
but different, I've outlined that below in detail and followed with
short notes on how the subsequent sessions differ from the first one.

A full day may very well be needed for the first Design Session; even
need two days might be needed. The subsequent Design Sessions
may need only a few hours each. Each session should comprise be-
tween 2 and 12 people. There should be as much continuity of partic-
ipants over all sessions as possible.

What follows is more of a guide than a set of rules. As you'll discover,
facilitation of the Design Sessions is more art than science. The facil-
itator must be responsive to the group's needs and adjust the process
accordingly. Think about what is happening and don't blindly follow
the method.

The First Design Session

In the very first Design Session, a lot of background needs to be cov-
ered. You should spend time understanding the 'big picture, refining
it to a manageable problem to solve, and finally, work out what the
solution needs to look like.

Phase One - Why Are We Here?

This phase is most important in the first Design Session. The key
question may need to be revisited periodically should the mission
change or the group bring in new members in subsequent sessions.

This phase consists of:

Introductions — Even if everyone knows each other, always do a
round of introductions. It sets a baseline expectation that you should
state even the obvious. It will also help you to understand something
about the stakeholders present and the roles they play. Experienced
facilitators also use this time to read the interactions in the group
and start formulating strategies to get them collaborating.

Asking why we are here — Any new software brings about change,
change in how people do things, change in what kinds of things exist
in the world. So, it is important to ask the question Do we want
change? This should be explicit, and the facilitator can actually ask
this question outright. The answer is yes, but it's not the answer that
it is important. What's important is the affirmation by the group
that they are prepared to undergo a process that will change the way
things are currently done. This also means they need to make a com-
mitment to using the software developed through this process and
you should ask them for this commitment also.

Phase Two - Where Are We Now?

Phase two is a review. This review will be
very detailed as a very deep, shared un-
derstanding of the problem at hand
needs to be achieved. The review con-

ARET e sists of:

Asking where we are now — Ask the
group what the problem is that they are
trying to solve. A good, shared under-
standing of the 'big picture' problem you
are all trying to solve together is needed
before it can be filled in with concrete
detail. For example, if you are working
with an organisation to fix workflow is-
sues, this will require a thorough docu-

NOISS3S NOIS3AA FHL

25

QOHL3IW 3341 30VE49V0 IHL

26

mentation of the current workflow. Start with a description of the
current problem, identifying current processes and pain points in as
much detail as possible. This will take a lot of discussion and it may
be necessary to ask participants to draw or demonstrate the issue
they are talking about. Document it all thoroughly.

Identifying the scope — The problem you identify above may be
huge so you will need to spend time narrowing down the problem
space with the group. This might mean asking many clarifying ques-
tions and teasing out logical inconsistencies to get a very clear, con-
crete, understanding of the problem to be addressed. It might very
well be that you discover the problem resides elsewhere than origi-
nally thought, or it could be that you segment the problem and
choose to tackle just one part of it. Whatever the outcome, make sure
everyone explicitly agrees to it.

Phase Three - Where Are We Going?

During this phase, the group articulates what the solution will look
like. This can be a free-ranging, dreamy discussion but should be

shaped slowly (like whittling wood) into something reasonable and
achievable. You're looking for 'big picture' approaches to the prob-
lem, so spend as much time as necessary pitching ideas around and
exploring possibilities. Funnel these ideas through discussion until
you have a general consensus on a very general approach to the prob-
lem. Don't worry if this feels very abstract and 'up in the air' This is
normal. The next step is when you refine these ideas to make them
concrete. Also, don't be surprised if this process alters the under-
standing of the scope of the problem. Feel free to allow phases two
and three to feed back into each other. You will need, however, to
keep the discussion moving forward and be prepared to break people
out of any cyclic problem holes they might get stuck in.

Phase Four — How Do We Get There?
g In the first Design Session, you start the process for
2000 what I call a Solution Proposition. The Solution
- Proposition is a design for the 'big picture' approach
you will take to solve the problem. For example, if the
solution is a web platform, the Solution Proposition might look like a
drawing of all the relevant pages of the platform and what they do. A
good target outcome of this process is to produce high-level wire-
frames of the solution. Although the Solution Proposition is at a very

high level, it will require a lot of "on the ground" detail, thinking, and
discussion.

= |e—[/—=
s
E) 1= — |
= &

 IE
0
l
8

/[

M
D‘

There are a number of ways you can develop the Solution Proposi-
tion. The method you choose is a product of your observations about

NOISS3S NOIS3AA FHL

27

QOHL3IW 3341 30VE49V0 IHL

28

how the team works together, the problems they are trying to solve,
and your experience as a facilitator.

Below are some example processes to help get you there. Remember,
however, that facilitation is about invention. Feel free to invent
processes like the ones below, on the fly. Test them out in your ses-
sions and learn. If you are doing your job well, then you'll be experi-
menting all the time. If you are doing your job really well, then no one
will notice when one of your new inventions (possibly made up as
you're saying it) fails.

The ones listed below work, but the first time I used each I made
them up on the spot (but let's keep that between the two of us!):

1 Blank Canvas

Start with a very open-ended session. Ask how the group would
like to work and let the conversation roam. Document points that
seem important. Document repeated themes. What you're looking
for is a starting point for the new story about how things will be
done. This starting point might be very concrete, or it might be
highly conceptual. It could also be that you think you have the
starting point but find that some people in the group want to take
the starting point back to the fundamentals of what they are try-
ing to achieve. Your job as a facilitator is to witness this and keep
the process going until you find the point where most, if not all, of
the participants, want to start the new story.

At this point, you need to make sure the new story is well docu-
mented and you're getting good clear, simple, points. At this point,
there's no substitute for having experience as a facilitator. If you're
struggling, then the best strategy is to try and make the starting
point somewhat concrete and less conceptual. For example, draw a
blank box and say something like How do we start the new process in a
browser? Then ask participants to draw out concrete details about
what could happen in this new canvas. Let people roam and use
what you've learned in the previous phases and what you know
about the domain, human behavior, and technology to keep the
conversation real. This will make your work much easier.

Iterate like this and work towards building concrete steps that il-
lustrate the new ways of doing things. It's surprising that in some

situations, this process will lead directly to a solid understanding
of the user interfaces and flow you are building. At other times,
you may need to keep the conversation going until something
concrete materialises. In general, the more experienced you are as
a facilitator, the more smoothly this part of the process will pro-
ceed.

Pitching

Give each of the participants (or small groups) large pieces of pa-
per and ask them to draw a solution. Set a time limit for this task.
Don't let anyone claim they don't know enough about the problem
space — seemingly naive Solution Propositions often have very
insightful points. At the end of the time limit, each participant
will pin their paper to the wall and speak about it for five minutes.
These are not real pitches, just a quick presentation that explains
what they were thinking. Then, have five minutes of questions and
comments immediately after each pitch. Leave all papers on the
wall — just add to them for every pitch.

After everyone has presented, you should break for a while as this
was probably a long session. It's also good to break here to take
some time and consider what your next step will be. You must de-
rive a single Solution Proposition from the pitches. It's OK at this
point to propose it yourself when the group returns to the room.
Make sure that when you do this, you're proposing ideas that the
group has had, not your own pre-designed solution. Invite com-
ment on the Solution Proposition that you propose.

This phase should end with everybody having a good understand-
ing of what cultural changes are necessary and what technology
changes (what you're trying to build) are required. It's not unusual
to have whiteboard wireframes at the end of this process.

Give Them the Pen

Sometimes it's very useful to give someone with a strong vision
for the solution a pen and an opportunity to draw the solution on
a whiteboard and explain it. This turns the idea into something
tangible that the group can then discuss.

NOISS3S NOIS3AA FHL

29

QOHL3IW 3341 30VE49V0 IHL

30

Phase Five — Summarise and Capture

This phase involves wrapping up the session, sum-
marising the agreed problem space, the Solution
Proposition and, most importantly, what will hap-
pen next. Document all this thoroughly and ensure
everyone agrees to it.

&
G’/
o
&
(e

These summaries will be distilled into a Design Brief
that will then be passed onto the build team (see following section).

Phase Six - Working Agreements
During this phase, you'll agree upon:

- how you'll work together

— what channels you'll use for communica-
tion

— where you'll store all the agreements, sup-
porting documents, and the like

— when the next Design Session will take place

Build
Now you come to the build period. See the chapter The Build Period
for information on how to effectively facilitate the build period.

Subsequent Design Sessions

In the subsequent Design Sessions, you'll be guided by the basic So-
lution Proposition that the group has agreed upon and there will be
some software (created during the Build Periods) to review.

The subsequent Design Sessions follow the same basic pattern and
rules of the first Design Session, with one exception: instead of fo-
cusing on the problem as a whole, the group focuses on developing
solutions to specific portions of the problem.

The Design Sessions move incrementally forward in this fashion:
what has been built is reviewed, the next issue to be solved is identi-

fied, and the next part of the Solution Proposition is designed. This
enables the Cabbage Tree Method to advance step-by-step, filling in
details of the vision and building the necessary features in turn until
the entire Solution Proposition is realised.

As with the initial Design Session, you need to keep asking the fol-
lowing questions in each subsequent one:

Where Are We Now?

This question isn't an audit of the problem you're trying to solve. In-
stead, use it as the starting point to review any work from the previ-
ous build period. Discuss it in detail and compare it to the previously
agreed-upon designs. If there are changes to be made, work through
them now and document them. You can pass these changes to the
build team at the end of the session as feedback and requests for
changes. This step is also a good moment to add detail to the Solution
Proposition or bring in any ideas that might improve it.

Where Are We Going?

Agreeing on the scope means deciding what part of the Solution
Proposition you're going to work on next. Ask the group to define the
most important problems to solve next, and, if possible, have the
group choose a single, cohesive, problem to solve. Avoid trying to
solve too much.

How Do We Get There?

Asking this question focuses the group on developing a design for
the portion of the problem they've chosen to solve. You can also use
the patterns from the first Design Session here to focus on what the
group wants to tackle.

Summarise and Agree
As with the first Design Session, make sure you document every-
thing and get explicit agreements on the details of the final design.

NOISS3S NOIS3AA FHL

31

QOHL3IW 3341 30VE49V0 IHL

32

Effectively Facilitating the Design
Sessions

Facilitation is a key ingredient for the Design Sessions. In fact, no
group should attempt to use the Cabbage Tree Method or run a De-
sign Session without a facilitator.

The facilitator is part of your open source team and should not be
part of (if possible) the user group that needs the solution. This neu-
trality frees the facilitator, as best as possible, from existing ideas,
and organisational politics and dynamics. In turn, this enables the
facilitator to read the group clearly and interact freely.

Your tools for facilitating the Design Session are post-it notes, a large
whiteboard and markers (or large pieces of paper).

Facilitation Tips

Facilitation is both an art and a science. It's difficult to master both
aspects of facilitation. If you're new to facilitation, then it's best, if
possible, to watch experienced facilitators in action and try some
small experiments first. I strongly advise against learning facilita-
tion from a book. There's no substitute for experience.

Having said that, here are some things to remember when facilitat-
ing Design Sessions. They're intended to help you formulate an ap-
proach to this process. They're not intended as a facilitation 'how to.

Build trust before products — As a facilitator, your job is to build
trust in you, the process, the group, and the outcomes. Each time you
make a move that diminishes trust, you're taking away from the
process and reducing the likelihood of success. Building trust, work-
ing with what people say and towards what people want, must be put
ahead of building the product. Trust that the product, and a commit-
ment to it, will emerge from this process, and the product will be
better for it. I am thankful to Allen Gunn for this wisdom shared
very kindly with me many years ago.

Change is cultural, not technical — Too often, people propose tech-
nology as the mechanism for change. Technology doesn't create
change. People create change, with the assistance of technology.
Make sure the group is not seeing technology as a magic wand. The
group must be committed to changing what they do. The what they do
shouldn't be posited as a function of technology. It's their behavior
that will always need to change, regardless of whether there is a
change in the technology they use. Behavioral and cultural change is
a necessity, not something that might happen. The group needs to
recognise this and be committed to changing how they work. This
also means that they must commit to using the solutions they design
together.

Even the best solutions have problems — Understand and embrace
that even the best solutions, including the one you're representing,
will have problems. There is no perfect solution. If there is, then, in-
evitably, time will make it imperfect.

SNOISS3S NOIS3d FHL ONILVLITIOVL AT1IAILDF443

33

QOHL3IW 3341 30VE49V0 IHL

34

Leave your know-it-all at the door — If you're part of an open
source team, then you may be expected to be somewhat of a domain
expert. It's not possible to leave that at the door, of course, but you
should be careful that you don't use this knowledge as heavy handed
doctrine. Instead, your domain knowledge should manifest itself in
signposts, salient points, and inspiring examples at the right mo-
ments. These points should add to the conversation. They shouldn't
override the conversation. Don’t overplay your domain knowledge
and vision. You'll lose people if you do.

Give up your solution before you enter the room — If you're part of
an open source team, it's also a mistake to enter into a Design Ses-
sion and advocate or direct the group towards your teams technol-
ogy. If the group chooses a technology or path you don't have a stake
in, then that's fine. The likelihood is that they'll choose your technol-
ogy or approach, otherwise you wouldn't be asked to be in the same
room with the group. However, if you facilitate the process and drive
them to your project you'll be reading the group wrong and they'll
feel coerced and, similar to above, you'll lose them.

Move one step at a time — Move through each step slowly. The time
it takes to move through a step is the time it takes to move through a
step. There is no sense in hurrying the process, as doing that will not
lead to better results or faster agreements. It will, in all likelihood,
move towards shallow agreements that don’t stick and ill-thought-
out solutions that don’t properly address the problem. The time it
takes to move through a step will also give you a good indication of
the time you'll need for the steps to come. Be prepared to adjust your
timelines if necessary, and to return to earlier unresolved issues if
need be.

Ask many questions, get clarifying answers, ask dumb questions,
the dumber the better — Try not to ask leading questions. Keep ask-
ing questions until clear, simple answers are given. Break down
compound answers, where necessary, into fragments, and drill down
until the necessary clarity is found. Dumb questions are often the
most valuable questions. Asking a dumb question often unpacks im-
portant issues or reveals hidden and unchallenged assumptions. It's
very surprising how fundamental some of these assumptions can be,
so be brave on this point.

Reduce, reduce, reduce — The clearest points are simple ones.

Get agreements as you go — Double check that everyone is on the
same page as the process proceeds. Get explicit agreement, even on
seemingly obvious points. Total consensus is not always necessary or
possible, but general agreement is.

Document it all — Get it down in simple terms on whiteboards or
using whatever tools are available. At the end of sessions, document
what has been learned with digital, shareable media.

Summarise your journey and where you are now — At the end of a
session, it's always necessary to summarise in clear terms the jour-
ney the group has taken and the point arrived at. Get consensus on
this. It's also useful at various points throughout the session to do
this as a way of 1) illustrating you're all on the same journey, and 2)
reminding people what the session is all about. In the summary,
make sure to illustrate that you understand the key points. Bring out
points that may have taken a while to get clarity on or that you may
have initially misunderstood. There will be many of those points if
you're doing your job well! Doing that lets the group know you're
embedded with them and not merely guiding them towards a pre-
designed end game.

Use their semantics — Use the group's terminology to describe the
problem and the solution. Don't impose your own semantics. Re-
member, they are the experts. Use their language. If, instead, you use
your terms in the process, then inevitably people will become con-
fused. If a term doesn't exist for something, ask them to define it.

Remember, facilitation is an art of invention — At the very least,
facilitation is an act of translating known patterns into a new context
and tweaking those patterns on the fly. But the reality is that much of
the what a facilitator does will involve making things up. Instinct
and the fear of failure force the on-the-fly invention of methods, but
a good facilitator makes it appear that the method has existed for a
hundred years and has never been known to fail. When it does fail, a
really good facilitator will ensure that no one notices and that the out-
comes were the ones desired.

SNOISS3S NOIS3d FHL ONILVLITIOVL AT1IAILDF443

35

Build

The Build Period

The Build Period, as its name suggests, is the time when the code and
user interface specialists start building. The Build Period follows im-
mediately after a Design Session.

The team can choose its own build methodology. Some organisations
are set up to follow what they call "agile" methods (I use inverted
commas here for good reason — please see the critique of the Agile
industry written by Pragmatic Dave, one of the developers of the Ag-
ile Manifesto, here: https://pragdave.me/blog/2014/03/04/time-to-kill-ag-
ile/ or https://www.youtube.com/watch ?v=a-BOSpxYJoM). Or, they follow
a process that demands more detail up front. The choice of build
methodology doesn't matter as long as it is sensitive and responsive
to the design process.

aing

37

https://pragdave.me/blog/2014/03/04/time-to-kill-agile/
https://www.youtube.com/watch?v=a-BOSpxYJ9M

QOHL3IW 3341 30VE49V0 IHL

38

The build process discussed below, which I feel is "native" to CTM,
has the following advantages:

— it's a great the opportunity for the UI/UX and code special-
ists to be creative,

- it's extremely fast and efficient,

- itdelivers great results, and

it actually works.

The Design Brief

The Build Period revolves around a single source of truth: the design
brief. The brief comes out of the preceding Design Session. As you
continue to work out details you must maintain the design brief with
accurate and up-to-date information on the team's approach to the
solution at all times. This should be kept somewhere so anyone can
find it at anytime.

A first version of a high-level brief should emerge from each Design
Session, or the next day at the latest, and then be sent to the UI/UX
and code specialists. This brief doesn't need to be more than one to
two pages long, and it should:

- articulate a clear goal for the Build Period

— explain the terminology (if necessary) to avoid confusion

outline the design decisions; and
- identify what is still left to be decided.

The last point is very important. The brief should clearly state what
design choices have already been made and what is left to be decided
by the code and UI/UX specialists. This defines the 'scope' within
which the build team can be creative (sometimes there are a lot of
problems to be creatively solved, sometimes less so).

This document should be easy to read. It's largely a narrative docu-
ment, not a requirements document.

The Build Meeting

The build team then reads the design brief and meets a few days
later. When the team meets (if you can work out a good online white-
boarding system - BigBlueButton is a great choice — remotely
works well), the facilitator leads them through a shorter design
process. In this meeting they together consider the brief and discuss
matters, working through issues as they go. The goal is to twofold:

I to give as much space as possible for the build team to be creative

aoldad a1ing 3HL

39

lest pos-

ists in the simp

iali

f the use case spec

1810n O

2 to realise the v

sible way.

COLLABORATIVE PRODUCT DEVELOPMENT ITeRATION WORKFLOW

Final brief and
continued
development

& ~
- A Beoin om,_mc%z&
— g
oO - onmm_.mulv ﬂﬂpﬁm;wm_w \ ,

Collaborative Determine itial brief Coko Design Begin development
Design Session approach Initial brie Meeting and mocks

MocKs AS NECESsARY

Adam and Alex Adam and Alex discuss, Alex creates initial brief Yannis, Christos, Julien, Yannis and Christos Circulate final brief.
meet with clients determine approach describing the scope of Adam, and Alex meet begin development on Team continues to
for Collaborative and set parameters for work in current to discuss brief, areas that don’t need discuss approaches to

Design Session development; iteration of development work, and mocks. Julien creates areas that are still

requirements vs. areas development mocks. Pick a target mocks for new flexible.
of flexibili date for completion of interfaces
current development
cycle.

o= = = == ———~ = TiIMEuNE: 1 WEEK MAXIMUM — — — — = — — = —-|

The build workflow of the Collaborative Knowledge Foundation (Coko)

THE CABBAGE TREE METHOD

40

During this meeting, the build team can create rough mock-ups on a
whiteboard, if necessary, and make UI/UX and code decisions. The
key to success is achieving consensus on clearly defined design deci-
sions at every step. When the Ul and code people have discussed all
parts of the design and have made their decisions, the team works
out an order in which to address these issues.

Once the team has made its decisions, the following must occur:

I update the design brief that was circulated with the decisions
made in this session. This brief'is the ‘single source of truth’.

2 code specialists can begin work.

3 the UI specialists can develop mockups. The code specialists can
usually start working on other tasks while waiting for these mock-
ups.

4 the brief must be updated with the finished mockups.

The Build Period

It is pretty simple — the build team then continues until done! This
part of the process should not be over-managed and requires little
facilitation. Good people, with good challenges, when left to get on
with it and with a clear understanding of what is required from
them, get the work done. The code and UI/UX specialists should be
able to proceed unhindered. They may need to regularly check in
with the use case specialists to get further specifications, designs,
and the like. Occasionally, the facilitator may need to check in that
they have everything they need, and should also look ahead a little
and make sure that any of their future needs are anticipated. How-
ever, the facilitator should also avoid looking over their shoulders
and continually asking 'are we there yet?'

I firmly believe the build team should use whatever tools they choose
for managing the process, no need for them to slow down while
learning to use the facilitator's favorite tool.

aoldad a1ing 3HL

41

QOHL3IW 3341 30VE49V0 IHL

42

Once the build is complete, schedule another Design Session with
the use case specialists to review the current work and to design the
next part of the solution.

Facilitating the Build Period

Facilitating the Build Period comes down to the initial meeting be-
tween the facilitator and the build team, consisting of the open
source project's UX/UI and code specialists. Whether in person or re-
motely, the facilitator needs to keep in mind that this is when the
build team has the opportunity to be creative. During this meeting,
the facilitator's primary role is to tease out each member of the build
team's ideas, ensuring that everyone is heard and that all their ideas
are considered.

This process should be fun and relaxed. Make sure that everyone has
a say and that they can be creative with their ideas. In my experi-
ence, these sessions need only two hours or so with a small team. It
might take longer if larger teams are involved. In those cases, I rec-
ommend breaking into small groups and each tackling part of the
problems at hand.

During the session, go through the design brief, line by line, with
everyone. Add any extra detail that comes to mind which may not
have made it from the Design Session to the brief. The facilitator
must be careful not to insert their personal opinion on how these
things should be approached, and also needs to be very clear on what

aoldad a1ing 3HL

43

QOHL3IW 3341 30VE49V0 IHL

44

isn't negotiable and what the group can still work out. Usually, there
will be a lot still to be worked out. In the rare case that there isn't, this
needs to be stated clearly. Nothing is gained except resentment if
people are misled into thinking they have more say in the solution
than what they actually do.

Open up the conversation at a very high level. An opening question
like "So what do you think?" can get the ball rolling. Don't feel a need
to jump in and fill in the silence if that's all you get in return. Re-
member that this session is for the code and UI/UX specialists to
have their voices and ideas heard. Most likely, the session will start
with some clarifying questions. As a facilitator, you don't need to
have all the answers. Be very careful not to throw in your opinion
where there isn't (yet) an answer to the question at hand. Be very
prepared to say "I don't know" or, better yet, "I don't know, what do
you think?"

The session should then be as free ranging as possible. Allow people
to hammer out ideas. Listen especially to the quiet voices, as I've
found that more often than not they are the ones with the winning
ideas. Be prepared to explore seemingly off-the-wall ideas and en-
courage people to bring them forward.

Many logical dead ends may need to be explored, and a number of
proposed solutions worked through before identifying the most ele-
gant solution.

Throughout this session, document each point that the group agrees
upon. Make sure these agreements are stated in simple clear terms,
agreed on by all explicitly, and documented clearly.

There may be times when this session comes up with ideas that con-
tradict what the use case specialists have already decided. This is OK
for discussion and exploration, but the agreed solution must not dis-
agree with the design the use case specialists have already decided
upon. In these cases, wait for the right moment and simply state that
this is not what the use case specialists wanted. Then move the team
towards ideas that are in harmony with what was wanted.

There are many technical questions that may arise which affect how
the code and UX specialists realise the use case specialists' design.

Don't be afraid to let the UX and code specialists work out a lot of this
deeper technical detail during the Build Period. It's good to give them
this autonomy and creative space. You only need to concern yourself
making sure their decisions won't contradict the design brief. It pays
to double check sometimes, too.

If there are clarifying questions for the use case specialists, it is most
important to encourage the build team to ask those questions di-
rectly to the use case specialists. However, the facilitator may need to
keep an eye on some of these interactions to ensure that the build
team isn't trying to convince the users that a different solution is bet-
ter than the one they've designed. The build team must respect and
adhere to the design brief at all times.

One very important general rule for these meetings and the conse-
quent decisions is that the build team must realise the simplest pos-
sible solution for the use case specialists' design. Don't get into ex-
tremely complicated edge cases or open-ended 'what ifs." Keep the
solution as simple as possible.

At the end of this session, immediately update the brief with all of
the agreements. The code specialists should be able to start work
right away, and the UX/UI specialists may need to work out some in-
teractions and mockups and add them to the brief in the days to
come. If this is the case, then don't let that process drag out. Be firm
about a two- to three-day timeline after this session to consider the
brief 'done.

Let the build team get on with its work. If the right people are on
board then they should give you a rough (and it can be a very rough)
estimate of how long the Build Period might last. Don't impose a
deadline on them. Let the build team give their estimate of timelines.
However, expect at all times that their estimates are probably too
short! Be easy on timelines, and give the build team as long as they
need to do the work.

When the session is over, take the results back to the use case spe-
cialists for them to review. Move forward with the next Design Ses-
sion to solve the next part of the problem.

aol¥3ad d1ind 3HL ONILVLITIOVS

45

Onwards

Adoption and Diffusion

The first group of use case specialists, the people that designed the
software, will be the early adopters. They're good allies to have be-
cause they have buy-in. They'll be enthusiastic and eager but patient
when using the software in its early stages. Get them using the soft-
ware as soon as it is viable so you can all learn and improve the soft-
ware together.

After several iterations of testing and development, there's a solid
application. What's next? It's time to take the solution to the rest of
the world.

How can the Cabbage Tree Method be used to migrate a product
from the small group of early adopters to a larger base of users?
Through diffusion, a strategy for stimulating the adoption of a prod-
uct into a wider market by taking advantage of the networks of the
early adopters.

It's a simple idea, much like adding layers to an onion. The first
adopters of the solution can convince others on 'the next layer out' to
adopt the product. They're the solution's evangelists. They'll help in-
troduce the product to the next level of adoption. They'll turn their
friends and colleagues into users, who in turn become advocates, and

&=,

SO on.

SAYYMNO

47

QOHL3IW 3341 30VE49V0 IHL

48

The diffusion strategy has been proven out in the real world. The fol-
lowing example comes from the medical sector, which I learned
about first hand from John Abele of Boston Scientific.

Early in his career, John was involved with developing cutting edge
(or non-cutting edge, as the case may be) technologies for non-inva-
sive surgery. Today, non-invasive surgical techniques are common-
place. Back then, however, surgery was invasive by definition. Back
then, talk of non-invasive instruments for surgery would be like
talking about screen-less phones today. Imagine trying to sell that.

Because surgery was defined by 'cutting', the market was hostile to
this new idea. So John had a hard time trying to generate adoption
for a technology that he knew could transform the medical sector
and help millions of people. As he writes:

We were developing new approaches that had huge potential
value for customers and society but required that well-trained
practitioners change their behavior. ... Despite the clear logic
behind the products we invented, markets for them didn’t ex-
ist. We had to create them in the face of considerable resis-
tance from players invested in the old way and threatened
with a loss of power, prestige, and money.

Smart people who are under the painful burden of outdated technol-
ogy often resist systemic change. Why? Because it requires them to
alter their established ways of working. This, rather normal, resis-
tance to change, can be a huge obstacle to adoption.

In John's case, he drew on some insights he had gathered early on in
his career from Jack Whitehead, CEO of Technicon, a small company
that had the patent for a new medical device. When trying to bring
this product to market, Technicon also had the odds stacked against
them. No one, from the lab technicians through to the professional
societies and manufacturers, wanted anything to do with it. So Jack
drummed up some interest from early adopter types and came up
with a surprising next step. He “told all interested buyers that they’d
have to spend a week at his factory learning about it.” Further, they
would have to pay to attend.

That sounds like an odd sales pitch now, and back then (early 1960s),
apparently it sounded a whole lot more crazy. Nevertheless, Jack
convinced a handful of excited early adopters to seize that day and
brought them into his factory.

During that week, the early adopters were not treated like customers
but like partners. They were part of the team. They came to know
each other, they worked together, they helped to shape the product
further. They became the team. Sound familiar? This is pretty much
how CTM works. The users become the team.

As John says:

When the week ended, those relationships endured and a vi-
brant community began to emerge around the innovation.
The scientist-customers fixed one another’s machines. They
developed new applications. They published papers. They
came up with new product ideas. They gave talks at scientific
meetings. They recruited new customers. In time, they devel-
oped standards, training programs, new business models, and
even a specialised language to describe their new field.

This meeting of once potential customers, now team members, not
only contributed to the design of the technology but then took it out
into the world and fueled adoption and interest in the product. What
had humble roots with a group of early adopters was on its way to
creating large-scale change.

John witnessed this process and realised it was essentially strategy,
not whimsy: “[Jack] was launching a new field that could be created
only by collaboration — and collaboration among people who had

previously seen no need to work together.”

John went on to form Boston Scientific and refined this strategy fur-
ther with Andreas Gruentzig when introducing the balloon catheter
to a hostile and uninterested market. Again, he was successful in
catalysing large-scale change.

Astonishing.

NOISN441Q ANV NOILd0oaY

49

QOHL3IW 3341 30VE49V0 IHL

50

But, on reflection perhaps there are no surprises here. It is the way
open source has always operated. You could have told the same story
about any number of successful open source projects. Indeed, as John
also reflects:

Just as Torvalds helped spawn the Open Source movement,
and Jimmy Wales spearheaded the Wiki phenomenon, An-
dreas [Gruentzig] created a community of change agents who
carried his ideas forward far more efficiently than he could
have done on his own.

Each of these examples has created change on a massive scale and
their success stems from a simple common strategy - to create a
community of change agents. John Abele did it with surgical instru-
ments. Linus Torvalds did it with an operating system kernel. Jimmy
Wales did it with information. Now we need to leverage these exact
same strategies to fuel the adoption of world-beating user-facing
open source products.

Diffusion works because the users are the community. They feel own-
ership of the processes and the result. They are the change agents.

It should come as no surprise that a community of change agents is
exactly what the Cabbage Tree Method produces in the Design Ses-
sions. You must empower each community member to take the prod-
uct into the world and convince more people of its usefulness, per-
haps even drawing them into future Design Sessions. This is how we
fuel adoption, and this is how the product will evolve and improve
while continuing to gain a wider base of users.

Things to Think About

QOHL3IW 3341 30VE49V0 IHL

52

Let's Be Friendly

Attribution in technical projects is a fascinating topic. It's fascinat-
ing. It's important. And, very occasionally, it's controversial.

The big question is Who should get credit for a work? In open source, it's
generally accepted that code specialists get attribution for the code
they create. Projects give credit by documenting individual contribu-
tions to the code base in the copyright and contributions file of an
open source project. You can also, of course, look at any code reposi-
tory and see who has added what over the course of a project.

Attribution for code specialists is pretty clear cut. But what of the
other people who are involved in a project? What about the use case
specialists, UI/UX specialists, the people who make wireframes, the
high-level systems architects, the project or product managers, the
ideas people, the founders, and the documentation teams? They
don't contribute code, but they all make a contribution to the success
of the project. Where and how do we acknowledge their work?

Their stories don’t often get told. When those stories are told, they're
in narrative form on websites or blogs. Those stories tell a personal

or organisational journey about the development of a piece of soft-
ware from idea to reality. But unlike the contributions files and his-
tory records in code repositories, blogs and websites have a much
shorter lifespan. Blogs and websites eventually disappear, and when
they're lost, so are the stories they've told. When that happens,
there's only the record of the code to tell the story. If we believe those
remaining records, then we would conclude that the only people
who contribute to a successful software project are the code special-
ists.

That's a pity because all of these varying types of contributions are
critical to the lifecycle of any software. Where would any successful
desktop software be without the contributions of testers? Many soft-
ware solutions would not get a second look without a designer’s
touch or feedback. Some projects would never have been born if it
wasn't for the inspiration of some energetic soul who managed to
convince others of the value of an idea.

A Personal Example

For almost two decades, I've been fortunate enough to work on many
successful and interesting technical projects. I've often been the
ideas guy. I'm neither a developer nor a designer. I suck at QA. I do,
however, major in musing on the possibilities that technology can
offer.

Sometimes, I'm fortunate enough to receive credit for this work. I
cherish those few moments when people have recognised my contri-
bution and have credited me in the occasional blog post. Martin P.
Eve (a good friend and all-round solid guy), for example, recently
wrote this in a post about his JavaScript Typesetting Engine CaSSius:

I can’t remember when Adam Hyde first suggested to me that
CSS regions might be a viable way to produce PDFs for schol-
arly communications but it seemed like a good idea at that
time and, I think, it still does. CaSSius is my implementation
of that idea.

ATAN3IY4 34 S.131

53

QOHL3IW 3341 30VE49V0 IHL

54

Without this mention, there would be no other record of the effect I
had on Martin's thinking and practice. I was humbled by his gen-
erosity.

When these things happen, even though they rarely do, it motivates
people like me. It puts some fuel in our engines to keep moving on
and to continue working the way we do.

Sometimes, however, it goes the other way. Occasionally, and once
again (thankfully this time) it's rare, there are those who believe
non-technical contributors shouldn't receive any credit. Once or
twice someone has been outraged when I casually mentioned my in-
volvement in a project that I managed, initiated or inspired.

Many of the contributions I've made have been made to small pro-
jects. Small projects that represent not much more than a line item
in a long career of coming up with innovative approaches to many
interesting problems. Over time, I've come to understand that for
some people, the line item is the source of great pride. This may be
the only innovative project that person has ever worked on. While
I've begun to understand it, this kind of possessiveness doesn’t make
a whole lot of sense in the open source world.

Attribute Generously

The good news is that many open source projects do offer attribution
for many types of work. Mozilla, for example, has a single global
credits list that records the names of people that have made “a sig-
nificant investment of time, with useful results, into Mozilla project-
governed activities.” Audacity is a favorite project of mine that cred-
its pretty widely, categorising contributions to include code, docu-
mentation, translation, QA, administration, and the like. These are
great examples of software projects which recognise and honour a
variety of work.

We should all follow the examples of Mozilla, Audacity, and other
projects like them. Open source can only benefit from the attitude
towards attribution that these projects embrace.

We need to think carefully about how technical projects value and
attribute work. Architects often proudly say “I built that house.” Did
they actually lift the hammer and cut the wood? Probably not, but I
think they have a right to proudly state their contribution as much as
users, designers, developers, managers, QA folk, and ideas people
have a right to state and be recognised for the contributions they
made towards a software project.

There are far too many folks whose contributions go unacknowl-
edged. We should all celebrate and recognise the large variety of con-
tributions that go into creating shared open source solutions and
find effective, lasting, ways to tell those stories.

ATAN3IY4 34 S.131

55

QOHL3IW 3341 30VE49V0 IHL

56

Cabbage Tree Open Source

The Cabbage Tree Method, as you've
seen, is a design-build methodology.
But its intended impact isn't merely to
improve the process through which
we can produce amazing user-facing
open source software. The Cabbage
Tree Method advocates a different
kind of culture in open source pro-
jects, a culture that's inclusive and
which requires, and in fact celebrates,
a wide range of skills and roles, a cul-
ture that also places the use case spe-
cialist at the centre of the process to
design a solution.

This kind of shift in culture may not be an easy thing to achieve for
either a single project or the open source movement as a whole.
There are those working in open source who aren't at all tolerant of
new approaches. After posting my ideas to an open source founda-
tion's mailing list, for example, I was taken seriously by some, but
ridiculed (and worse) by others. More than once I was advised that
only developers should start open source projects. Any other alter-
native was labelled ‘unwise’. I was also told that free and open source
projects shouldn't need to work with designers. I was informed that
my statements pointing out the dominant demographic being 'white
men that know how to code' was a result of my unconscious racism.
Not many addressed the important points I hoped we would discuss,
points like the fundamental misunderstanding of the value of the
'itch to scratch' model that open source holds so dearly.

I'm not a coder. However, I have started many successful open source
projects and I will start many more. I don't believe open source is
about code (even though some of the people I respect most in the
world are "white men that know how to code"). I believe open source
is about solving problems with, and as, a community. That means
tackling problems developers have, and tackling problems that
everyone else has. I believe the fundamental strength of open source

is making the 'people with the problem' the driving force in the solu-
tions team. I believe that this means open source culture needs to ex-
amine its current modus operandi and come to terms with its fail-
ures, address some of the issues, and experiment with new models
for projects and cultures within projects.

I believe there is a great need to diversify open source models.

From experience, I also know that starting an open source project is
the most important culture-setting moment you will ever have.
Starting projects in new ways leads to new models. I firmly believe
these new models are the way forward for open source into areas
where it's not having much success.

I want to suggest to anyone out there who cannot or will not write
code that you are the future of open source. Your vision, by virtue of
the fact you do not write code, is exactly what open source needs to
diversify cultures and methods. You need to bring your ideas to the
table, whether that's to an existing project or as the ignition point for
anew one.

Unfortunately, there are few examples that show 'non-coders' [sic]
how to start a new project. You need to work it out for yourself.
While you're doing that, trust your instincts. Find a way to make it
happen which is consistent with your ideas and your vision. That is
what being a pioneer is all about. My advice on this, based on in-
volvement in many open source projects, is that I've found success in
operating in good faith and by entrusting others with my vision. It's
crucial to infect others with the excitement of the mission. That
process, as it happens, is also a fundamental tenet of open source:
start with a common itch, and build community to scratch it.

I'm proof that it can work. Don'’t listen to anyone who tells you that
starting an open source project is a bad idea. Go ahead and make it
happen. Give yourself permission to be a little bit stubborn and to go
against the grain. Then, make sure you let others know about your
experiences so we can all learn from your successes and failures just
as, I hope, you might learn from some of mine.

304N0S N340 3341 39vd8VvD

57

QOHL3IW 3341 30VE49V0 IHL

58

Colophon

Adam Hyde — https://www.adamhyde.net , https://coko.foundation
Scott Nesbitt — https://scottnesbitt.net/contact/

Pepper Curry — https://peppercurry.com

Raewyn Whyte — http://allmyownwords.co.nz

Julien Taquet — julien@lesvoisinsdustudio.ch

Cabbage Tree Method — https://www.cabbagetree.org

The text font of the book is Vollkorn, designed by Friedrich Al-
thausen, http://vollkorn-typeface.com, while headers and caption are set
in Cooper Hewitt, designed by Chester Jenkins, https://www.cooperhe-
witt.org/open-source-at-cooper-hewitt/cooper-hewitt-the-typeface-by-chester-
jenkins/ .

This book was produced using the open source software — Ghost,
WordPress, Booktype, Editoria, and Vivliostyle. Interestingly this
book on the Cabbage Tree Method was created with Editoria, and
Editoria was created using the Cabbage Tree Method!

The first edition of this book was printed by Edwards Brothers Mal-
loy at the end of January 2017, in San Francisco, United States of
America.

Text, images, covers, the whole thing — CC-BY-SA (images and cover
attribute to Pepper Curry, text to Adam Hyde, Scott Nesbitt, and
Raewyn Whyte).

https://www.adamhyde.net/
https://coko.foundation/
https://scottnesbitt.net/contact/
https://peppercurry.com/
http://allmyownwords.co.nz/
mailto:julien@lesvoisinsdustudio.ch
http://vollkorn-typeface.com/
https://www.cooperhewitt.org/open-source-at-cooper-hewitt/cooper-hewitt-the-typeface-by-chester-jenkins/

This book is CC-BY-SA.
For more information on the Cabbage Tree Method, see:
https://www.adamhyde.net and https://www.cabbagetree.org

Collaborative
Knowledge
Foundation

